
Nicholas A Vitanza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4294889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles. Neuro-Oncology, 2022, 24, 986-994.	1.2	8
2	Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene, 2022, 41, 461-475.	5.9	39
3	Two cases of pineal anlage tumor with molecular analysis. Pediatric Blood and Cancer, 2022, 69, e29596.	1.5	2
4	Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro-Oncology, 2022, 24, 1366-1374.	1.2	36
5	dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter region. Cell Reports, 2022, 38, 110457.	6.4	12
6	Radiomics Can Distinguish Pediatric Supratentorial Embryonal Tumors, High-Grade Gliomas, and Ependymomas. American Journal of Neuroradiology, 2022, 43, 603-610.	2.4	5
7	MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study. Radiology, 2022, 304, 406-416.	7.3	27
8	The intrinsic and microenvironmental features of diffuse midline glioma: Implications for the development of effective immunotherapeutic treatment strategies. Neuro-Oncology, 2022, 24, 1408-1422.	1.2	27
9	IMMU-09. Interim analysis from BrainChild-03: Seattle Children's Locoregional B7-H3 CAR T Cell Trial for Children with Recurrent Central Nervous System Tumors and DIPG. Neuro-Oncology, 2022, 24, i83-i83.	1.2	0
10	HGG-62. Molecularly guided treatment of mismatch repair-deficient pediatric brain tumors. Neuro-Oncology, 2022, 24, i76-i76.	1.2	0
11	DIPG-49. International preclinical drug discovery and biomarker program informing an adoptive combinatorial trial for DMG. Neuro-Oncology, 2022, 24, i29-i30.	1.2	0
12	DIPG-58. Therapeutic HDAC targeting in hypermutant CNS tumors. Neuro-Oncology, 2022, 24, i32-i32.	1.2	0
13	STRIVE-02: A first-in-human phase 1 trial of systemic B7H3 CAR T cells for children and young adults with relapsed/refractory solid tumors Journal of Clinical Oncology, 2022, 40, 10011-10011.	1.6	9
14	Window-of-opportunity study of ONC201 in pediatric patients with diffuse intrinsic pontine glioma (DIPG) and thalamic glioma Journal of Clinical Oncology, 2022, 40, TPS2082-TPS2082.	1.6	1
15	LTBK-03. Targeted mass spectrometry of serial CSF and serum specimens from children with diffuse intrinsic pontine glioma treated with intracranial B7-H3 CAR T cells. Neuro-Oncology, 2022, 24, i191-i191.	1.2	0
16	STRIvE-01: Phase I study of EGFR806 CAR T-cell immunotherapy for recurrent/refractory solid tumors in children and young adults Journal of Clinical Oncology, 2022, 40, 2541-2541.	1.6	5
17	Considerations when treating high-grade pediatric glioma patients with immunotherapy. Expert Review of Neurotherapeutics, 2021, 21, 205-219.	2.8	5
18	Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naÃ ⁻ ve diffuse midline glioma models. Neuro-Oncology, 2021, 23, 376-386.	1.2	43

NICHOLAS A VITANZA

#	Article	IF	CITATIONS
19	Molecularly Targeted Treatments for NF1-Mutant Diffuse Intrinsic Pontine Glioma. journal of applied laboratory medicine, The, 2021, 6, 550-553.	1.3	2
20	MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neuro-Oncology Advances, 2021, 3, vdab042.	0.7	14
21	Serial plasma and CSF cell-free tumor DNA (cf-tDNA) tracking in diffuse midline glioma patients undergoing treatment with ONC201 Journal of Clinical Oncology, 2021, 39, 2012-2012.	1.6	0
22	HGG-32. ONC201 AND ONC206 TARGET TUMOR CELL METABOLISM IN PEDIATRIC DIFFUSE MIDLINE GLIOMA PRECLINICAL MODELS. Neuro-Oncology, 2021, 23, i23-i24.	1.2	2
23	Phase 0 Clinical Trial of Everolimus in Patients with Vestibular Schwannoma or Meningioma. Molecular Cancer Therapeutics, 2021, 20, 1584-1591.	4.1	11
24	IMMU-11. CLINICAL UPDATES AND CORRELATIVE FINDINGS FROM THE FIRST PATIENT WITH DIPG TREATED WITH INTRACRANIAL CAR T CELLS. Neuro-Oncology, 2021, 23, i29-i29.	1.2	7
25	Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma. American Journal of Neuroradiology, 2021, 42, 1702-1708.	2.4	12
26	Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nature Medicine, 2021, 27, 1544-1552.	30.7	138
27	Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study. Neurosurgery, 2021, 89, 892-900.	1.1	8
28	Neonatal appendicitis presenting as a painless abdominal mass. Journal of Pediatric Surgery Case Reports, 2021, 72, 101964.	0.2	1
29	TAMI-79. THERAPEUTIC REVERSAL OF PRENATAL PONTINE ID1 SIGNALING IN DIPG. Neuro-Oncology, 2021, 23, vi215-vi215.	1.2	0
30	Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neuro-Oncology Advances, 2021, 3, vdab169.	0.7	11
31	Extramedullary Hematopoiesis in the Dura Mater During Treatment of a CNS Embryonal Tumor. Journal of Pediatric Hematology/Oncology, 2021, 43, e1217-e1219.	0.6	0
32	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	28.9	177
33	Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. American Journal of Neuroradiology, 2020, 41, 1718-1725.	2.4	31
34	Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: the Seattle Children's Hospital experience. Journal of Neuro-Oncology, 2020, 148, 607-617.	2.9	21
35	Intracranial growing teratoma syndrome (iGTS): an international case series and review of the literature. Journal of Neuro-Oncology, 2020, 147, 721-730.	2.9	21
36	Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurgical Focus, 2020, 48, E4.	2.3	43

NICHOLAS A VITANZA

#	Article	IF	CITATIONS
37	ONC201 in previously irradiated pediatric H3 K27M-mutant glioma or newly diagnosed DIPG Journal of Clinical Oncology, 2020, 38, 3619-3619.	1.6	0
38	A Protocol for the Generation of Treatment-naÃ⁻ve Biopsyderived Diffuse Intrinsic Pontine Glioma and Diffuse Midline Glioma Models. , 2020, 1, 158-167.		3
39	DIPG-64. INTERNATIONAL PRECLINICAL DRUG DISCOVERY AND BIOMARKER PROGRAM INFORMING AN ADOPTIVE COMBINATORIAL TRIAL FOR DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2020, 22, iii300-iii300.	1.2	Ο
40	DIPG-10. OPTIMAL HDAC INHIBITION IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2020, 22, iii288-iii289.	1.2	0
41	Care Coordination in a SARS-CoV-2-infected Child With Newly Diagnosed Medulloblastoma and Fanconi Anemia. Journal of Pediatric Hematology/Oncology, 2020, Publish Ahead of Print, e972-e974.	0.6	1
42	Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials. Current Treatment Options in Neurology, 2019, 21, 37.	1.8	73
43	No Further Therapy. International Journal of Radiation Oncology Biology Physics, 2019, 104, 969-970.	0.8	0
44	Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Science Translational Medicine, 2019, 11, .	12.4	129
45	Response to Pembrolizumab in a Patient With Xeroderma Pigmentosum and Advanced Squamous Cell Carcinoma. JCO Precision Oncology, 2019, 3, 1-6.	3.0	8
46	Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro-Oncology, 2019, 21, 83-94.	1.2	108
47	MR Imaging–Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma. American Journal of Neuroradiology, 2019, 40, 154-161.	2.4	87
48	EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget, 2019, 10, 7080-7095.	1.8	52
49	Pilocytic astrocytoma with leptomeningeal spread in a patient with incontinentia pigmenti presenting with unilateral nystagmus. Pediatric Blood and Cancer, 2018, 65, e26886.	1.5	2
50	Immunotherapy for brain tumors: understanding early successes and limitations. Expert Review of Neurotherapeutics, 2018, 18, 251-259.	2.8	22
51	DIPG-35. A NOVEL HDAC INHIBITOR IN NEW PATIENT-DERIVED DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) MODELS. Neuro-Oncology, 2018, 20, i56-i56.	1.2	3
52	IMMU-11. BRAINCHILD PIPELINE: LOCOREGIONAL IMMUNOTHERAPY WITH CHIMERIC ANTIGEN RECEPTOR (CAR) T-CELLS FOR RECURRENT/REFRACTORY CENTRAL NERVOUS SYSTEM TUMORS. Neuro-Oncology, 2018, 20, i100-i101.	1.2	0
53	Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 31, 635-652.e6.	16.8	290
54	Blood-brain barrier–adapted precision medicine therapy for pediatric brain tumors. Translational Research, 2017, 188, 27.e1-27.e14.	5.0	12

NICHOLAS A VITANZA

#	Article	IF	CITATIONS
55	Integrating RNA sequencing into neuro-oncology practice. Translational Research, 2017, 189, 93-104.	5.0	10
56	Advances in the biology and treatment of pediatric central nervous system tumors. Current Opinion in Pediatrics, 2016, 28, 34-39.	2.0	9
57	50 Years Ago in The Journal of Pediatrics. Journal of Pediatrics, 2016, 173, 100.	1.8	2
58	Noncarboplatin-induced Sensorineural Hearing Loss in a Patient With an Intracranial Nongerminomatous Germ Cell Tumor. Journal of Pediatric Hematology/Oncology, 2016, 38, 312-316.	0.6	0
59	Pediatric Ependymoma. Journal of Child Neurology, 2016, 31, 1354-1366.	1.4	33
60	The Progression of Bone Mineral Density Abnormalities After Chemotherapy for Childhood Acute Lymphoblastic Leukemia. Journal of Pediatric Hematology/Oncology, 2015, 37, 356-361.	0.6	12
61	50 Years Ago in The Journal of Pediatrics. Journal of Pediatrics, 2015, 167, 80.	1.8	0
62	The Biology of Relapsed Acute Lymphoblastic Leukemia. Journal of Pediatric Hematology/Oncology, 2014, 36, 413-418.	0.6	34
63	Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatric Blood and Cancer, 2014, 61, 1779-1785.	1.5	23