Christian C Ruff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing models of social and strategic decision making with process tracing and neural data. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, e1559.	2.8	3
2	Neuro-computational foundations of moral preferences. Social Cognitive and Affective Neuroscience, 2022, 17, 253-265.	3.0	6
3	Inhibiting Human Aversive Memory by Transcranial Theta-Burst Stimulation to the Primary Sensory Cortex. Biological Psychiatry, 2022, 92, 149-157.	1.3	10

A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622

•		12.0	
5	Effective psychological therapy for <scp>PTSD</scp> changes the dynamics of specific largeâ€scale brain networks. Human Brain Mapping, 2022, 43, 3207-3220.	3.6	6
6	Human brain anatomy reflects separable genetic and environmental components of socioeconomic status. Science Advances, 2022, 8, eabm2923.	10.3	11
7	Long-Term Effects of Self-Administered Transcranial Direct Current Stimulation in Episodic Migraine Prevention: Results of a Randomized Controlled Trial. Neuromodulation, 2021, 24, 890-898.	0.8	21
8	Genetic underpinnings of risky behaviour relate to altered neuroanatomy. Nature Human Behaviour, 2021, 5, 787-794.	12.0	20
9	Real-world stress resilience is associated with the responsivity of the locus coeruleus. Nature Communications, 2021, 12, 2275.	12.8	48
10	Anticipatory Energization Revealed by Pupil and Brain Activity Guides Human Effort-Based Decision Making. Journal of Neuroscience, 2021, 41, 6328-6342.	3.6	14
11	Frontopolar theta oscillations link metacognition with prospective decision making. Nature Communications, 2021, 12, 3943.	12.8	15
12	Enhancing reappraisal of negative emotional memories with transcranial direct current stimulation. Scientific Reports, 2021, 11, 14760.	3.3	5
13	Dissecting functional contributions of the social brain to strategic behavior. Neuron, 2021, 109, 3323-3337.e5.	8.1	20
14	Role of the locus coeruleus arousal system in cognitive control. Journal of Neuroendocrinology, 2020, 32, e12890.	2.6	30
15	The right temporoparietal junction enables delay of gratification by allowing decision makers to focus on future events. PLoS Biology, 2020, 18, e3000800.	5.6	11
16	Causal contributions of human frontal eye fields to distinct aspects of decision formation. Scientific Reports, 2020, 10, 7317.	3.3	9
17	Dissociable mechanisms govern when and how strongly reward attributes affect decisions. Nature Human Behaviour, 2020, 4, 949-963.	12.0	47
18	Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimulation, 2020, 13, 1124-1149.	1.6	78

#	Article	lF	CITATIONS
19	Effect of an Educational Intervention on Therapeutic Inertia in Neurologists With Expertise in Multiple Sclerosis. JAMA Network Open, 2020, 3, e2022227.	5.9	9
20	Emotional expressions associated with therapeutic inertia in multiple sclerosis care. Multiple Sclerosis and Related Disorders, 2019, 34, 17-28.	2.0	3
21	Shared neural mechanisms between imagined and perceived egocentric motion – A combined GVS and fMRI study. Cortex, 2019, 119, 20-32.	2.4	10
22	Neurostimulation Reveals Context-Dependent Arbitration Between Model-Based and Model-Free Reinforcement Learning. Cerebral Cortex, 2019, 29, 4850-4862.	2.9	21
23	The neural circuitry of affect-induced distortions of trust. Science Advances, 2019, 5, eaau3413.	10.3	44
24	Efficient coding of subjective value. Nature Neuroscience, 2019, 22, 134-142.	14.8	121
25	Disturbance of approachâ€avoidance behaviors in nonâ€human primates by stimulation of the limbic territories of basal ganglia and anterior insula. European Journal of Neuroscience, 2019, 49, 687-700.	2.6	25
26	Know your targets: Informing NIBS applications in psychiatry by neurocomputational models of behavioral control. L'Encephale, 2019, 45, S63-S64.	0.9	0
27	Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience, 2018, 21, 174-187.	14.8	615
28	Brain Stimulation Over the Frontopolar Cortex Enhances Motivation to Exert Effort for Reward. Biological Psychiatry, 2018, 84, 38-45.	1.3	44
29	Neurocomputational approaches to social behavior. Current Opinion in Psychology, 2018, 24, 41-47.	4.9	32
30	Brain Stimulation Studies of Social Norm Compliance: Implications for Personality Disorders?. Psychopathology, 2018, 51, 105-109.	1.5	3
31	Computational and neurobiological foundations of leadership decisions. Science, 2018, 361, .	12.6	30
32	Usability of an Educational Intervention to Overcome Therapeutic Inertia in Multiple Sclerosis Care. Frontiers in Neurology, 2018, 9, 522.	2.4	3
33	A causal role for right temporo-parietal junction in signaling moral conflict. ELife, 2018, 7, .	6.0	35
34	Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia, 2017, 99, 81-91.	1.6	42
35	Increasing honesty in humans with noninvasive brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4360-4364.	7.1	82
36	Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. Journal of Neuroscience, 2017, 37, 4766-4777.	3.6	73

#	Article	IF	CITATIONS
37	Insufficient sleep: Enhanced riskâ€seeking relates to low local sleep intensity. Annals of Neurology, 2017, 82, 409-418.	5.3	41
38	A causal account of the brain network computations underlying strategic social behavior. Nature Neuroscience, 2017, 20, 1142-1149.	14.8	126
39	Binding oneself to the mast: stimulating frontopolar cortex enhances precommitment. Social Cognitive and Affective Neuroscience, 2017, 12, 635-642.	3.0	18
40	Decision-making in Multiple Sclerosis: The Role of Aversion to Ambiguity for Therapeutic Inertia among Neurologists (DIScUTIR MS). Frontiers in Neurology, 2017, 8, 65.	2.4	42
41	Overcoming Therapeutic Inertia in Multiple Sclerosis Care: A Pilot Randomized Trial Applying the Traffic Light System in Medical Education. Frontiers in Neurology, 2017, 8, 430.	2.4	16
42	Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations. Journal of Neuroscience, 2016, 36, 12053-12065.	3.6	93
43	Neurocognitive Effects of Transcranial Direct Current Stimulation in Arithmetic Learning and Performance: A Simultaneous tDCS-fMRI Study. Brain Stimulation, 2016, 9, 850-858.	1.6	27
44	Cognitive biases associated with medical decisions: a systematic review. BMC Medical Informatics and Decision Making, 2016, 16, 138.	3.0	574
45	Brain stimulation reveals crucial role of overcoming self-centeredness in self-control. Science Advances, 2016, 2, e1600992.	10.3	100
46	Dynamical Representation of Dominance Relationships in the Human Rostromedial Prefrontal Cortex. Current Biology, 2016, 26, 3107-3115.	3.9	71
47	Attentional Bias towards Positive Emotion Predicts Stress Resilience. PLoS ONE, 2016, 11, e0148368.	2.5	41
48	Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning. European Journal of Neuroscience, 2015, 42, 1667-1674.	2.6	27
49	Transcranial Stimulation Over the Dorsolateral Prefrontal Cortex Increases the Impact of Past Expenses on Decision-Making. Cerebral Cortex, 2015, 27, bhv298.	2.9	23
50	Automatic versus Choice-Dependent Value Representations in the Human Brain. Neuron, 2015, 85, 874-885.	8.1	99
51	Anticipatory Anxiety Disrupts Neural Valuation during Risky Choice. Journal of Neuroscience, 2015, 35, 3085-3099.	3.6	78
52	Transcranial Stimulation over Frontopolar Cortex Elucidates the Choice Attributes and Neural Mechanisms Used to Resolve Exploration–Exploitation Trade-Offs. Journal of Neuroscience, 2015, 35, 14544-14556.	3.6	76
53	The precision of value-based choices depends causally on fronto-parietal phase coupling. Nature Communications, 2015, 6, 8090.	12.8	114
54	Direct Evidence for Attention-Dependent Influences of the Frontal Eye-Fields on Feature-Responsive Visual Cortex. Cerebral Cortex, 2014, 24, 2815-2821.	2.9	41

#	Article	IF	CITATIONS
55	Experimental Methods in Cognitive Neuroscience. , 2014, , 77-108.		14
56	Neural Oscillations and Synchronization Differentially Support Evidence Accumulation in Perceptual and Value-Based Decision Making. Neuron, 2014, 82, 709-720.	8.1	181
57	The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 2014, 15, 549-562.	10.2	564
58	Untangling Perceptual Memory: Hysteresis and Adaptation Map into Separate Cortical Networks. Cerebral Cortex, 2014, 24, 1152-1164.	2.9	67
59	Matched-filter acquisition for BOLD fMRI. NeuroImage, 2014, 100, 145-160.	4.2	31
60	Sensory processing: who's in (topâ€down) control?. Annals of the New York Academy of Sciences, 2013, 1296, 88-107.	3.8	24
61	Changing Social Norm Compliance with Noninvasive Brain Stimulation. Science, 2013, 342, 482-484.	12.6	296
62	Right Supramarginal Gyrus Is Crucial to Overcome Emotional Egocentricity Bias in Social Judgments. Journal of Neuroscience, 2013, 33, 15466-15476.	3.6	399
63	Linking Brain Structure and Activation in Temporoparietal Junction to Explain the Neurobiology of Human Altruism. Neuron, 2012, 75, 73-79.	8.1	234
64	Cortical responses to changes in acoustic regularity are differentially modulated by attentional load. NeuroImage, 2012, 59, 1932-1941.	4.2	25
65	Audiovisual synchrony enhances BOLD responses in a brain network including multisensory STS while also enhancing targetâ€detection performance for both modalities. Human Brain Mapping, 2012, 33, 1212-1224.	3.6	40
66	Response to comment on: Exp Brain Res. 2011 May 5th. Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Pierre Pouget PhD, Nicolas Wattiez MSc and Antoni Valero-Cabre MDPhD. Experimental Brain Research, 2012, 218, 157-158.	1.5	0
67	Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection. Frontiers in Psychology, 2012, 3, 619.	2.1	23
68	Concurrent TMS and functional magnetic resonance imaging: methods and current advances. , 2012, , .		4
69	Concurrent TMS-fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention. European Journal of Neuroscience, 2011, 33, 991-1000.	2.6	64
70	Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Experimental Brain Research, 2011, 212, 143-152.	1.5	19
71	Top–Down Modulation of Human Early Visual Cortex after Stimulus Offset Supports Successful Postcued Report. Journal of Cognitive Neuroscience, 2011, 23, 1921-1934.	2.3	28
72	Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17510-17515.	7.1	157

#	Article	IF	CITATIONS
73	New approaches to the study of human brain networks underlying spatial attention and related processes. Experimental Brain Research, 2010, 206, 153-162.	1.5	31
74	Effects of parietal TMS on somatosensory judgments challenge interhemispheric rivalry accounts. Neuropsychologia, 2010, 48, 3470-3481.	1.6	13
75	Studying the Role of Human Parietal Cortex in Visuospatial Attention with Concurrent TMS-fMRI. Cerebral Cortex, 2010, 20, 2702-2711.	2.9	110
76	Neural correlates of visual extinction or awareness in a series of patients with right temporoparietal damage. Cognitive Neuroscience, 2010, 1, 16-25.	1.4	5
77	The Role of Contralesional Dorsal Premotor Cortex after Stroke as Studied with Concurrent TMS-fMRI. Journal of Neuroscience, 2010, 30, 11926-11937.	3.6	190
78	Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI. Journal of Cognitive Neuroscience, 2009, 21, 1146-1161.	2.3	133
79	Influence of Dopaminergically Mediated Reward on Somatosensory Decision-Making. PLoS Biology, 2009, 7, e1000164.	5.6	90
80	Image artifacts in concurrent transcranial magnetic stimulation (TMS) and fMRI caused by leakage currents: Modeling and compensation. Journal of Magnetic Resonance Imaging, 2009, 29, 1211-1217.	3.4	48
81	Combining TMS and fMRI: From â€~virtual lesions' to functional-network accounts of cognition. Cortex, 2009, 45, 1043-1049.	2.4	187
82	Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends in Cognitive Sciences, 2009, 13, 319-327.	7.8	110
83	Mapping causal interregional influences with concurrent TMS–fMRI. Experimental Brain Research, 2008, 191, 383-402.	1.5	197
84	Integrated Bayesian models of learning and decision making for saccadic eye movements. Neural Networks, 2008, 21, 1247-1260.	5.9	31
85	Dorsal Premotor Cortex Exerts State-Dependent Causal Influences on Activity in Contralateral Primary Motor and Dorsal Premotor Cortex. Cerebral Cortex, 2008, 18, 1281-1291.	2.9	173
86	Interhemispheric Effect of Parietal TMS on Somatosensory Response Confirmed Directly with Concurrent TMS–fMRI. Journal of Neuroscience, 2008, 28, 13202-13208.	3.6	106
87	Parietal Stimulation Decouples Spatial and Feature-Based Attention. Journal of Neuroscience, 2008, 28, 11106-11110.	3.6	61
88	Reward Facilitates Tactile Judgments and Modulates Hemodynamic Responses in Human Primary Somatosensory Cortex. Journal of Neuroscience, 2008, 28, 8161-8168.	3.6	116
89	Distinct Causal Influences of Parietal Versus Frontal Areas on Human Visual Cortex: Evidence from Concurrent TMS-fMRI. Cerebral Cortex, 2008, 18, 817-827.	2.9	282
90	Saccades to a Remembered Location Elicit Spatially Specific Activation in Human Retinotopic Visual Cortex. Journal of Cognitive Neuroscience, 2008, 21, 230-245.	2.3	17

#	Article	IF	CITATIONS
91	Readout From Iconic Memory and Selective Spatial Attention Involve Similar Neural Processes. Psychological Science, 2007, 18, 901-909.	3.3	65
92	Spatial Attention Changes Excitability of Human Visual Cortex to Direct Stimulation. Current Biology, 2007, 17, 134-139.	3.9	89
93	Attentional Preparation for a Lateralized Visual Distractor: Behavioral and fMRI Evidence. Journal of Cognitive Neuroscience, 2006, 18, 522-538.	2.3	101
94	fMRI Evidence for a Three-Stage Model of Deductive Reasoning. Journal of Cognitive Neuroscience, 2006, 18, 320-334.	2.3	164
95	On-Line Attentional Selection From Competing Stimuli in Opposite Visual Fields: Effects on Human Visual Cortex and Control Processes. Journal of Neurophysiology, 2006, 96, 2601-2612.	1.8	67
96	Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex. Current Biology, 2006, 16, 1479-1488.	3.9	479
97	Short- and long-term changes in anterior cingulate activation during resolution of task-set competition. Brain Research, 2006, 1068, 161-169.	2.2	42
98	The Cutaneous Rabbit Illusion Affects Human Primary Sensory Cortex Somatotopically. PLoS Biology, 2006, 4, e69.	5.6	115
99	Neural Coding of Tactile Decisions in the Human Prefrontal Cortex. Journal of Neuroscience, 2006, 26, 12596-12601.	3.6	105
100	Repetitive Transcranial Magnetic Stimulation-Induced Changes in Sensorimotor Coupling Parallel Improvements of Somatosensation in Humans. Journal of Neuroscience, 2006, 26, 1945-1952.	3.6	85
101	fMRI Evidence for a Three-Stage Model of Deductive Reasoning. Journal of Cognitive Neuroscience, 2006, 18, 320-334.	2.3	58
102	Materialâ€specific episodic memory associates of the psychomotor poverty syndrome in schizophrenia. Cognitive Neuropsychiatry, 2004, 9, 213-227.	1.3	17
103	Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia, 2003, 41, 1241-1253.	1.6	124
104	Reasoning, Models, and Images: Behavioral Measures and Cortical Activity. Journal of Cognitive Neuroscience, 2003, 15, 559-573.	2.3	210
105	Methodological considerations regarding the association of Stroop and verbal fluency performance with the symptoms of schizophrenia. Schizophrenia Research, 2003, 61, 207-214.	2.0	50
106	Source monitoring and memory confidence in schizophrenia. Psychological Medicine, 2003, 33, 131-139.	4.5	142
107	Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neuroscience Letters, 2002, 327, 53-56.	2.1	163
108	The Role of the Anterior Cingulate Cortex in Conflict Processing: Evidence from Reverse Stroop Interference. Neurolmage, 2001, 14, 1150-1158.	4.2	102

#	Article	IF	CITATIONS
109	Arousal Optimizes Neural Evidence Representation for Human Decision-Making. SSRN Electronic Journal, 0, , .	0.4	2