Gabriele Lignani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors. Stem Cell Reports, 2015, 4, 25-36.	4.8	194
2	Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming. Cell Stem Cell, 2015, 17, 719-734.	11.1	152
3	dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Molecular Therapy, 2020, 28, 235-253.	8.2	135
4	Strategies to maximize the performance of a STED microscope. Optics Express, 2012, 20, 7362.	3.4	113
5	TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology, 2015, 40, 2217-2227.	5.4	98
6	REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO Journal, 2013, 32, 2994-3007.	7.8	89
7	Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nature Communications, 2013, 4, 1512.	12.8	87
8	In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain, 2020, 143, 891-905.	7.6	79
9	Phosphorylation of Synapsin I by Cyclin-Dependent Kinase-5 Sets the Ratio between the Resting and Recycling Pools of Synaptic Vesicles at Hippocampal Synapses. Journal of Neuroscience, 2014, 34, 7266-7280.	3.6	65
10	Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Human Molecular Genetics, 2013, 22, 2186-2199.	2.9	61
11	Synapsins: From synapse to network hyperexcitability and epilepsy. Seminars in Cell and Developmental Biology, 2011, 22, 408-415.	5.0	52
12	Olanzapine: A potent agonist at the hM4D(Gi) DREADD amenable to clinical translation of chemogenetics. Science Advances, 2019, 5, eaaw1567.	10.3	44
13	Homeostatic Plasticity in Epilepsy. Frontiers in Cellular Neuroscience, 2020, 14, 197.	3.7	43
14	Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology, 2018, 132, 108-117.	4.1	39
15	Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of Neurochemistry, 2021, 157, 229-262.	3.9	36
16	Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity. Frontiers in Molecular Neuroscience, 2013, 6, 22.	2.9	32
17	Neurite-Enriched MicroRNA-218 Stimulates Translation of the GluA2 Subunit and Increases Excitatory Synaptic Strength. Molecular Neurobiology, 2019, 56, 5701-5714.	4.0	31
18	Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a mouse model of Dravet syndrome. Nature Communications, 2022, 13, 161.	12.8	29

GABRIELE LIGNANI

#	Article	IF	CITATIONS
19	Functional Role of ATP Binding to Synapsin I In Synaptic Vesicle Trafficking and Release Dynamics. Journal of Neuroscience, 2014, 34, 14752-14768.	3.6	27
20	REST-Dependent Presynaptic Homeostasis Induced by Chronic Neuronal Hyperactivity. Molecular Neurobiology, 2018, 55, 4959-4972.	4.0	26
21	Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism. Science Translational Medicine, 2021, 13, .	12.4	25
22	Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated sodium channels. Journal of Cell Science, 2016, 129, 1878-91.	2.0	23
23	Aromatic <scp>l</scp> -amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain, 2021, 144, 2443-2456.	7.6	16
24	LGI1 downregulation increases neuronal circuit excitability. Epilepsia, 2020, 61, 2836-2846.	5.1	12
25	In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline?. Frontiers in Neuroscience, 2021, 15, 632522.	2.8	11
26	Conservation of alternative splicing in sodium channels reveals evolutionary focus on release from inactivation and structural insights into gating. Journal of Physiology, 2017, 595, 5671-5685.	2.9	10
27	Activity Clamp Provides Insights into Paradoxical Effects of the Anti-Seizure Drug Carbamazepine. Journal of Neuroscience, 2017, 37, 5484-5495.	3.6	10
28	Progressive myoclonus epilepsy <i>KCNC1</i> variant causes a developmental dendritopathy. Epilepsia, 2021, 62, 1256-1267.	5.1	10
29	Presynaptic Muscarinic Receptors Reduce Synaptic Depression and Facilitate its Recovery at Hippocampal GABAergic Synapses. Cerebral Cortex, 2014, 24, 1818-1831.	2.9	9
30	Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following InÂVivo Delivery to Neonatal Mice. Molecular Therapy - Nucleic Acids, 2018, 12, 626-634.	5.1	7
31	Synapsin I Controls Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted Selective Fashion. Frontiers in Cellular Neuroscience, 2019, 13, 220.	3.7	7
32	Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523.	4.4	7
33	REST/NRSF drives homeostatic plasticity of inhibitory synapses in a target-dependent fashion. ELife, 2021, 10, .	6.0	7
34	Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Frontiers in Molecular Neuroscience, 2022, 15, 839366.	2.9	3
35	Optimizing Parameters for Wll STED Imaging. Biophysical Journal, 2012, 102, 725a.	0.5	1
36	DBS for refractory epilepsy: is closed-loop stimulation of the medial septum the way forward?. Brain, 2021, 144, 702-705.	7.6	1

#	Article	IF	CITATIONS
37	S.07.02 Role of trace amine-associated receptor 1 (TAAR1) in the modulation of dopaminergic system and cortico-striatal signalling. European Neuropsychopharmacology, 2013, 23, S120.	0.7	0
38	STED Microscope Optimization: Neuroscience Applications. Biophysical Journal, 2013, 104, 670a.	0.5	0
39	B13â€Huntington's disease phenotypes and disrupted corticostriatal connectivity observed in a novel ipsc-derived in vitro co-culture model. , 2018, , .		0
40	Unblock the Block! Preventing Inhibitory Failure to Maintain Inhibitory Restraint. Epilepsy Currents, 0, , 153575972210988.	0.8	0