Evgeniy V Yakushev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293/publications.pdf

Version: 2024-02-01

68 papers

1,351 citations

394421 19 h-index 377865 34 g-index

76 all docs 76 docs citations

76 times ranked 1500 citing authors

#	Article	IF	Citations
1	New insights into submarine tailing disposal for a reduced environmental footprint: Lessons learnt from Norwegian fjords. Marine Pollution Bulletin, 2022, 174, 113150.	5.0	6
2	Arctic Inshore Biogeochemical Regime Influenced by Coastal Runoff and Glacial Melting (Case Study) Tj ETQq0 (0 0 <u>rg</u> BT /0	Overlock 10 Tf
3	Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean. Marine Pollution Bulletin, 2022, 175, 113370.	5.0	25
4	Microplastic variability in subsurface water from the Arctic to Antarctica. Environmental Pollution, 2022, 298, 118808.	7. 5	25
5	The Impact of Methane Seepage on the Pore-Water Geochemistry across the East Siberian Arctic Shelf. Water (Switzerland), 2021, 13, 397.	2.7	O
6	Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Communications Earth & Environment, 2021, 2, .	6.8	68
7	ЎЦЕĐЊЕЗĐĐ"ĐДЗĐĐ•ĐДД Đ'ĐĐĐ•ĐЦЕĐÒ þĐ•Đ°ĐœĐŽĐĐ" ĐŸĐ»ĐаĐЮР©Đ"Đœ ĐœĐŽĐĐ¡ĐŠĐ"Đœ	ÐæÐ£Ðj	ĐžĐĐŽĐŒ Đ <mark>Ý</mark> §
8	Modeling Nickel Leaching from Abandoned Mine Tailing Deposits in J \tilde{A}_{s} ssingfjorden. Water (Switzerland), 2021, 13, 967.	2.7	4
9	Distribution of floating marine macro-litter in relation to oceanographic characteristics in the Russian Arctic Seas. Marine Pollution Bulletin, 2021, 166, 112201.	5.0	27
10	Modelling the Influence from Biota and Organic Matter on the Transport Dynamics of Microplastics in the Water Column and Bottom Sediments in the Oslo Fjord. Water (Switzerland), 2021, 13, 2690.	2.7	8
11	Modeling of biogeochemical consequences of a CO2 leak in the water column with bottom anoxia. International Journal of Greenhouse Gas Control, 2021, 111, 103464.	4.6	1
12	How Climate Change and Human Interaction Alter Chemical Regime in Salt Lakes, Case Study: Lake Urmia, Aral Sea, the Dead Sea, and Lake Issyk-Kul. Handbook of Environmental Chemistry, 2021, , .	0.4	0
13	Understanding the Biogeochemical Impacts of Fish Farms Using a Benthic-Pelagic Model. Water (Switzerland), 2020, 12, 2384.	2.7	10
14	Understanding the Role of Organic Matter Cycling for the Spatio-Temporal Structure of PCBs in the North Sea. Water (Switzerland), 2020, 12, 817.	2.7	4
15	A 1-Dimensional Sympagic–Pelagic–Benthic Transport Model (SPBM): Coupled Simulation of Ice, Water Column, and Sediment Biogeochemistry, Suitable for Arctic Applications. Water (Switzerland), 2019, 11, 1582.	2.7	3
16	Dissolved methane in the residual basins of the Aral Sea. Environmental Research Letters, 2019, 14, 065005.	5.2	8
17	Detection of Transient Denitrification During a High Organic Matter Event in the Black Sea. Global Biogeochemical Cycles, 2019, 33, 143-162.	4.9	11
18	Modelling Marine Sediment Biogeochemistry: Current Knowledge Gaps, Challenges, and Some Methodological Advice for Advancement. Frontiers in Marine Science, 2018, 5, .	2.5	36

#	Article	IF	CITATIONS
19	Water Column Distribution of Mercury Species in Permanently Stratified Aqueous Environments. Oceanology, 2018, 58, 28-37.	1.2	4
20	Modeling the Influence of Eutrophication and Redox Conditions on Mercury Cycling at the Sediment-Water Interface in the Berre Lagoon. Frontiers in Marine Science, $2018, 5, \ldots$	2.5	13
21	Experimental study of the influence of thawing permafrost on the chemical properties of sea water. Russian Journal of Earth Sciences, 2018 , 18 , $1-6$.	0.7	5
22	Dark N2 fixation: nifH expression in the redoxcline of the Black Sea. Aquatic Microbial Ecology, 2018, 82, 43-58.	1.8	17
23	Bottom RedOx Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water and sediment biogeochemistry. Geoscientific Model Development, 2017, 10, 453-482.	3.6	30
24	Hydrochemical studies in coastal waters of the Spitsbergen Archipelago in 2014–2015. Oceanology, 2016, 56, 763-765.	1.2	4
25	Alkalinity. Encyclopedia of Earth Sciences Series, 2016, , 17-17.	0.1	0
26	Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide $\hat{a} \in \text{``Argo}$ float observations and numerical modelling. Biogeosciences, 2014, 11, 5707-5732.	3.3	44
27	Biogeochemical consequences of an oxygenated intrusion into an anoxic fjord. Geochemical Transactions, 2014, 15, 5.	0.7	13
28	Interannual variability of the Black Sea Proper oxygen and nutrients regime: The role of climatic and anthropogenic forcing. Estuarine, Coastal and Shelf Science, 2014, 140, 134-145.	2.1	32
29	Environmental control on phytoplankton community structure in the NE Black Sea. Journal of Experimental Marine Biology and Ecology, 2014, 461, 267-274.	1.5	37
30	Stable isotope evidence for the Bottom Convective Layer homogeneity in the Black Sea. Geochemical Transactions, 2014, 15, 3.	0.7	10
31	On seasonal changes of the carbonate system in the Barents Sea: observations and modeling. Marine Biology Research, 2013, 9, 822-830.	0.7	10
32	Introduction: Redox Interfaces in Marine Waters. Handbook of Environmental Chemistry, 2012, , 1-12.	0.4	4
33	RedOx Layer Model: A Tool for Analysis of the Water Column Oxic/Anoxic Interface Processes. Handbook of Environmental Chemistry, 2012, , 203-233.	0.4	2
34	Concurrent activity of anammox and denitrifying bacteria in the Black Sea. Frontiers in Microbiology, 2012, 3, 256.	3.5	22
35	Black Sea biogeochemistry: Response to decadal atmospheric variability during 1960–2000 inferred from numerical modeling. Marine Environmental Research, 2012, 77, 90-102.	2.5	6
36	Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques. Oceanology, 2012, 52, 181-190.	1.2	13

#	Article	IF	Citations
37	On determination of low oxygen concentrations with Winkler technique. Oceanology, 2012, 52, 122-129.	1.2	13
38	Biogeochemical Peculiarities of the Vertical Distributions of Nutrients in the Black Sea. Handbook of Environmental Chemistry, 2011 , , $13-26$.	0.4	0
39	On Interannual Variability of Chemical Characteristics of Redox Layer and Cold Intermediate Layer of the Black Sea. Handbook of Environmental Chemistry, 2011, , 121-135.	0.4	О
40	Numerical Modelling of Biogeochemical Regime Response to Decadal Atmospheric Variability During 1960–2000 in the Black Sea. Handbook of Environmental Chemistry, 2011, , 253-271.	0.4	1
41	Manganese and Iron at the Redox Interfaces in the Black Sea, the Baltic Sea, and the Oslo Fjord. Handbook of Environmental Chemistry, 2011, , 67-93.	0.4	10
42	Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep). Handbook of Environmental Chemistry, 2011, , 235-251.	0.4	3
43	Modeling the influence of oxygenated inflows on the biogeochemical structure of the Gotland Sea, central Baltic Sea: Changes in the distribution of manganese. Computers and Geosciences, 2011, 37, 398-409.	4.2	14
44	Role of Sulfide Oxidation Intermediates in the Redox Balance of the Oxic–Anoxic Interface of the Gotland Deep, Baltic Sea. Handbook of Environmental Chemistry, 2010, , 95-119.	0.4	7
45	Anaerobic Microbial Community in the Aerobic Water and at the Oxic/Anoxic Interface in the Black Sea. Handbook of Environmental Chemistry, 2010, , 27-46.	0.4	1
46	A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochimica Et Cosmochimica Acta, 2010, 74, 7100-7115.	3.9	215
47	Dissolved and particulate forms of iron and manganese in the redox zone of the Black Sea. Oceanology, 2009, 49, 773-787.	1.2	20
48	Importance of the different manganese species in the formation of water column redox zones: Observations and modeling. Marine Chemistry, 2009, 117, 59-70.	2.3	72
49	Analysis of the hydrophysical structure of the Sea of Azov in the period of the bottom anoxia development. Journal of Marine Systems, 2008, 70, 300-307.	2.1	5
50	PUMP–CTD-System for trace metal sampling with a high vertical resolution. A test in the Gotland Basin, Baltic Sea. Chemosphere, 2008, 70, 1309-1319.	8.2	52
51	High abundance and dark CO ₂ fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea. Limnology and Oceanography, 2008, 53, 14-22.	3.1	65
52	Seasonal and interannual variability of hydrology and nutrients in the Northeastern Black Sea. Chemistry and Ecology, 2007, 23, 29-41.	1.6	6
53	Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Marine Chemistry, 2007, 107, 388-410.	2.3	119
54	Estimating the characteristics of the vertical turbulent viscosity in the upper 200-m layer of the Black Sea. Oceanology, 2007, 47, 476-481.	1.2	2

#	Article	IF	CITATIONS
55	Field studies of anoxic conditions in the Baltic Sea during the cruise of R/V Professor Albrecht Penck in July 2006. Oceanology, 2007, 47, 590-593.	1.2	9
56	Vertical Hydrochemical Structure of the Black Sea. , 2007, , 277-307.		22
57	THE SUBOXIC TRANSITION ZONE IN THE BLACK SEA. , 2006, , 105-138.		23
58	The northeastern Black Sea redox zone: Hydrochemical structure and its temporal variability. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1769-1786.	1.4	30
59	Fine hydrochemical structure of the redox zone in the black sea according to the results of measurements with an open oxygen sensor and with bottle samplers. Oceanology, 2006, 46, 629-641.	1.2	14
60	Formation of fish kills and anaerobic conditions in the Sea of Azov. Water Resources, 2005, 32, 151-162.	0.9	11
61	Seasonal Changes in the Hydrochemical Structure of the Black Sea Redox Zone. Oceanography, 2005, 18, 48-55.	1.0	18
62	Surface ventilation of the Black Sea's cold intermediate layer in the middle of the western gyre. Geophysical Research Letters, 2005, 32, .	4.0	38
63	On the Stability and Interannual Variability in the Hydrochemical Structure of the Redox Layer of the Black Sea. Oceanology, 2005, 45, 61-75.	1.2	3
64	The Role of Suspended Manganese in Hydrogen Sulfide Oxidation in the Black Sea Redox-Zone. Water Resources, 2002, 29, 72-77.	0.9	5
65	The Effect of Water Dynamics on the Hydrochemical Structure in the Northeastern Black Sea. Water Resources, 2001, 28, 188-193.	0.9	1
66	An Approach to Modelling Anoxic Conditions in the Black Sea. , 1999, , 93-108.		0
67	One-dimensional modeling of nitrogen and sulfur cycles in the aphotic zones of the Black and Arabian Seas. Global Biogeochemical Cycles, 1997, 11, 401-414.	4.9	49
68	About the effect of chemical-biological processes on the diurnal variance of hydrochemical parameters (numerical model). Soviet Journal of Physical Oceanography, 1992, 2, 433-441.	0.1	0