
Lars M Steinmetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4292840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-throughput functional characterization of protein phosphorylation sites in yeast. Nature Biotechnology, 2022, 40, 382-390.	9.4	24
2	High-speed fluorescence image–enabled cell sorting. Science, 2022, 375, 315-320.	6.0	121
3	Assembly-dependent translation of subunits <i>6</i> (Atp6) and <i>9</i> (Atp9) of ATP synthase in yeast mitochondria. Genetics, 2022, 220, .	1.2	5
4	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	6.0	113
5	Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science, 2022, 375, 1000-1005.	6.0	23
6	Patient-derived gene and protein expression signatures of NGLY1 deficiency. Journal of Biochemistry, 2022, 171, 187-199.	0.9	9
7	CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnology for Biofuels, 2021, 14, 41.	6.2	15
8	Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nature Communications, 2021, 12, 1366.	5.8	69
9	The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Reports, 2021, 35, 108936.	2.9	47
10	Single ell analyses reveal SARS oVâ€⊋ interference with intrinsic immune response in the human gut. Molecular Systems Biology, 2021, 17, e10232.	3.2	78
11	Single-molecule, full-length transcript isoform sequencing reveals disease-associated RNA isoforms in cardiomyocytes. Nature Communications, 2021, 12, 4203.	5.8	24
12	Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics, 2021, 219, .	1.2	8
13	Case-control study evaluating risk factors for SARS-CoV-2 outbreak amongst healthcare personnel at a tertiary care center. American Journal of Infection Control, 2021, 49, 1457-1463.	1.1	8
14	RBM20-Related Cardiomyopathy: Current Understanding and Future Options. Journal of Clinical Medicine, 2021, 10, 4101.	1.0	20
15	Fast and inexpensive whole-genome sequencing library preparation from intact yeast cells. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
16	A functional connection between translation elongation and protein folding at the ribosome exit tunnel in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2021, 49, 206-220.	6.5	6
17	Integrated single-cell transcriptomics and epigenomics reveals strong germinal center–associated etiology of autoimmune risk loci. Science Immunology, 2021, 6, eabh3768.	5.6	19
18	High-Throughput Nucleotide Resolution Predictions of Assay Limitations Increase the Reliability and Concordance of Clinical Tests. JCO Clinical Cancer Informatics, 2021, 5, 1085-1095.	1.0	4

#	Article	IF	CITATIONS
19	Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 2020, 22, 38-48.	4.6	521
20	Liver-specific deletion of Ngly1 causes abnormal nuclear morphology and lipid metabolism under food stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165588.	1.8	22
21	iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy. Cell Reports, 2020, 32, 108117.	2.9	40
22	Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nature Medicine, 2020, 26, 1788-1800.	15.2	58
23	GOTI, a method to identify genome-wide off-target effects of genome editing in mouse embryos. Nature Protocols, 2020, 15, 3009-3029.	5.5	24
24	TIF-Seq2 disentangles overlapping isoforms in complex human transcriptomes. Nucleic Acids Research, 2020, 48, e104-e104.	6.5	10
25	Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nature Methods, 2020, 17, 629-635.	9.0	139
26	Loss of N-Glycanase 1 Alters Transcriptional and Translational Regulation in K562 Cell Lines. G3: Genes, Genomes, Genetics, 2020, 10, 1585-1597.	0.8	14
27	Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. ELife, 2020, 9, .	2.8	53
28	Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature, 2019, 572, 481-487.	13.7	141
29	Biological plasticity rescues target activity in CRISPR knock outs. Nature Methods, 2019, 16, 1087-1093.	9.0	159
30	Select sequencing of clonally expanded CD8 ⁺ T cells reveals limits to clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8995-9001.	3.3	68
31	Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364, 289-292.	6.0	573
32	Regional Variation in <i>RBM20</i> Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy. Circulation: Heart Failure, 2019, 12, e005371.	1.6	96
33	Evolthon: A community endeavor to evolve lab evolution. PLoS Biology, 2019, 17, e3000182.	2.6	10
34	Chromatin-sensitive cryptic promoters putatively drive expression of alternative protein isoforms in yeast. Genome Research, 2019, 29, 1974-1984.	2.4	20
35	Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations. Nature Microbiology, 2019, 4, 683-692.	5.9	61
36	Yeast Single-cell RNA-seq, Cell by Cell and Step by Step. Bio-protocol, 2019, 9, e3359.	0.2	4

#	Article	IF	CITATIONS
37	HEx: A heterologous expression platform for the discovery of fungal natural products. Science Advances, 2018, 4, eaar5459.	4.7	167
38	Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol. G3: Genes, Genomes, Genetics, 2018, 8, 79-89.	0.8	124
39	Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis. Methods in Molecular Biology, 2018, 1689, 177-194.	0.4	5
40	Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency. Cell Systems, 2018, 7, 482-495.e10.	2.9	62
41	High-frequency actionable pathogenic exome variants in an average-risk cohort. Journal of Physical Education and Sports Management, 2018, 4, a003178.	0.5	23
42	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ⁻ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	7.2	177
43	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	13.7	221
44	Rpd3L HDAC links H3K4me3 to transcriptional repression memory. Nucleic Acids Research, 2018, 46, 8261-8274.	6.5	41
45	Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nature Biotechnology, 2018, 36, 512-520.	9.4	138
46	Multi-Layered Single-Cell Transcriptional Profiling of All Bone and Bone Marrow Populations Provides a Systems View of the Mesenchymal and Hematopoietic Stem Cell Niche. Experimental Hematology, 2018, 64, S47-S48.	0.2	0
47	<scp>NAD</scp> (P) <scp>HX</scp> repair deficiency causes central metabolic perturbations in yeast and human cells. FEBS Journal, 2018, 285, 3376-3401.	2.2	28
48	Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. ELife, 2018, 7, .	2.8	24
49	INO80 represses osmostress induced gene expression by resetting promoter proximal nucleosomes. Nucleic Acids Research, 2017, 45, gkw1292.	6.5	15
50	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	2.9	29
51	A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nature Neuroscience, 2017, 20, 793-803.	7.1	446
52	Assembly of functionally integrated human forebrain spheroids. Nature, 2017, 545, 54-59.	13.7	931
53	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	13.7	180
54	A method for highâ€ŧhroughput production of sequenceâ€verified <scp>DNA</scp> libraries and strain collections. Molecular Systems Biology, 2017, 13, 913.	3.2	41

#	Article	IF	CITATIONS
55	Human haematopoietic stem cell lineage commitment is a continuous process. Nature Cell Biology, 2017, 19, 271-281.	4.6	709
56	Modulating Crossover Frequency and Interference for Obligate Crossovers in <i>Saccharomyces cerevisiae</i> Meiosis. G3: Genes, Genomes, Genetics, 2017, 7, 1511-1524.	0.8	27
57	Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Central Science, 2017, 3, 1143-1155.	5.3	146
58	Genome Dynamics of Hybrid <i>Saccharomyces cerevisiae</i> During Vegetative and Meiotic Divisions. G3: Genes, Genomes, Genetics, 2017, 7, 3669-3679.	0.8	57
59	Human haematopoietic stem cell differentiation follows a continuous waddington-like landscape. Experimental Hematology, 2017, 53, S101.	0.2	0
60	Meiotic Interactors of a Mitotic Gene <i>TAO3</i> Revealed by Functional Analysis of its Rare Variant. G3: Genes, Genomes, Genetics, 2016, 6, 2255-2263.	0.8	5
61	Sensing a revolution. Molecular Systems Biology, 2016, 12, 867.	3.2	8
62	Modulation of mRNA and IncRNA expression dynamics by the Set2–Rpd3S pathway. Nature Communications, 2016, 7, 13534.	5.8	93
63	Functional interplay between MSL1 and CDK7 controls RNA polymerase II Ser5 phosphorylation. Nature Structural and Molecular Biology, 2016, 23, 580-589.	3.6	19
64	Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum. Cell Reports, 2016, 14, 2463-2475.	2.9	51
65	SYGNALing a Red Light for Glioblastoma. Cell Systems, 2016, 3, 118-120.	2.9	0
66	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	6.0	979
67	Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters. Nature Genetics, 2016, 48, 984-994.	9.4	75
68	Human haematopoietic stem cell differentiation follows a continuous waddington-like landscape. Experimental Hematology, 2016, 44, S77.	0.2	0
69	A privacy-preserving solution for compressed storage and selective retrieval of genomic data. Genome Research, 2016, 26, 1687-1696.	2.4	26
70	Integrating Cell Phone Imaging with Magnetic Levitation (iâ€LEV) for Labelâ€Free Blood Analysis at the Pointâ€ofâ€Living. Small, 2016, 12, 1222-1229.	5.2	39
71	Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex. Cell Reports, 2016, 15, 1782-1794.	2.9	46
72	Protein Abundance Control by Non-coding Antisense Transcription. Cell Reports, 2016, 15, 2625-2636.	2.9	51

#	Article	IF	CITATIONS
73	Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nature Protocols, 2016, 11, 359-376.	5.5	45
74	Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biology, 2016, 17, 45.	3.8	165
75	The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Research, 2016, 44, 3643-3658.	6.5	45
76	Genome-Wide Identification of Alternative Polyadenylation Events Using 3′T-Fill. Methods in Molecular Biology, 2016, 1358, 295-302.	0.4	2
77	Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture. Methods in Molecular Biology, 2016, 1358, 131-139.	0.4	53
78	<i>DChIPRep</i> , an R/Bioconductor package for differential enrichment analysis in chromatin studies. PeerJ, 2016, 4, e1981.	0.9	8
79	A highâ€throughput <scp>C</scp> h <scp>IP</scp> ― <scp>S</scp> eq for largeâ€scale chromatin studies. Molecular Systems Biology, 2015, 11, 777.	3.2	28
80	Singleâ€cell polyadenylation site mapping reveals 3′ isoform choice variability. Molecular Systems Biology, 2015, 11, 812.	3.2	52
81	Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype. PLoS Genetics, 2015, 11, e1005195.	1.5	17
82	Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genetics, 2015, 11, e1005735.	1.5	23
83	The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development. Nucleic Acids Research, 2015, 43, 115-128.	6.5	29
84	Widespread Co-translational RNA Decay Reveals Ribosome Dynamics. Cell, 2015, 161, 1400-1412.	13.5	246
85	Negative feedback buffers effects of regulatory variants. Molecular Systems Biology, 2015, 11, 785.	3.2	33
86	Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE) Tj ETQq0 0 0 rgBT /Ove States of America, 2015, 112, E4354-63.	rlock 10 T 3.3	f 50 227 Td (56
87	Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nature Immunology, 2015, 16, 933-941.	7.0	148
88	Variation in Crossover Frequencies Perturb Crossover Assurance Without Affecting Meiotic Chromosome Segregation in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 199, 399-412.	1.2	30
89	Magnetic levitation of single cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3661-8.	3.3	192
90	Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Nucleic Acids Research, 2015, 43, 787-802.	6.5	23

#	Article	IF	CITATIONS
91	Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. DMM Disease Models and Mechanisms, 2015, 8, 509-526.	1.2	115
92	Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell, 2015, 17, 422-434.	5.2	353
93	Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions. Cell, 2015, 162, 1051-1065.	13.5	304
94	The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production. Cell Reports, 2015, 12, 128-139.	2.9	47
95	Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis. Cell Reports, 2015, 13, 1610-1622.	2.9	34
96	Stem Cell-like Megakaryocyte Progenitors As Driving Forces of IFN-Induced Emergency Megakaryopooesis. Blood, 2015, 126, 2391-2391.	0.6	1
97	A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast. Genetics, 2014, 198, 755-771.	1.2	76
98	The Not5 Subunit of the Ccr4-Not Complex Connects Transcription and Translation. PLoS Genetics, 2014, 10, e1004569.	1.5	56
99	Heritability and genetic basis of protein level variation in an outbred population. Genome Research, 2014, 24, 1363-1370.	2.4	51
100	An Evaluation of High-Throughput Approaches to QTL Mapping in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 196, 853-865.	1.2	86
101	Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nature Communications, 2014, 5, 5585.	5.8	29
102	Roadblock Termination by Reb1p Restricts Cryptic and Readthrough Transcription. Molecular Cell, 2014, 56, 667-680.	4.5	53
103	Expression of Nuclear and Mitochondrial Genes Encoding ATP Synthase Is Synchronized by Disassembly of a Multisynthetase Complex. Molecular Cell, 2014, 56, 763-776.	4.5	43
104	Alternative polyadenylation diversifies postâ€ŧranscriptional regulation by selective <scp>RNA</scp> –protein interactions. Molecular Systems Biology, 2014, 10, 719.	3.2	91
105	Yeast Growth Plasticity Is Regulated by Environment-Specific Multi-QTL Interactions. G3: Genes, Genomes, Genetics, 2014, 4, 769-777.	0.8	34
106	Control of Cdc28 CDK1 by a Stress-Induced IncRNA. Molecular Cell, 2014, 53, 549-561.	4.5	85
107	Ultrasensitive proteome analysis using paramagnetic bead technology. Molecular Systems Biology, 2014, 10, 757.	3.2	835
108	Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. Nucleic Acids Research, 2014, 42, 4348-4362.	6.5	50

#	Article	IF	CITATIONS
109	Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nature Protocols, 2014, 9, 1740-1759.	5.5	57
110	Induced Mutations in Yeast Cell Populations Adapting to an Unforeseen Challenge. PLoS ONE, 2014, 9, e111133.	1.1	10
111	Transcription mediated insulation and interference direct gene cluster expression switches. ELife, 2014, 3, e03635.	2.8	35
112	High-Density Tiling Microarray Analysis of the Full Transcriptional Activity of Yeast. Methods in Molecular Biology, 2014, 1205, 257-273.	0.4	0
113	Polyadenylation site–induced decay of upstream transcripts enforces promoter directionality. Nature Structural and Molecular Biology, 2013, 20, 923-928.	3.6	258
114	Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics, 2013, 14, 90.	1.2	47
115	Extensive Variation in Chromatin States Across Humans. Science, 2013, 342, 750-752.	6.0	338
116	Gene regulation by antisense transcription. Nature Reviews Genetics, 2013, 14, 880-893.	7.7	556
117	Drift and conservation of differential exon usage across tissues in primate species. Proceedings of the United States of America, 2013, 110, 15377-15382.	3.3	103
118	System-wide identification of RNA-binding proteins by interactome capture. Nature Protocols, 2013, 8, 491-500.	5.5	176
119	Extensive transcriptional heterogeneity revealed by isoform profiling. Nature, 2013, 497, 127-131.	13.7	408
120	An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Research, 2013, 41, e65-e65.	6.5	98
121	Genotype-Environment Interactions Reveal Causal Pathways That Mediate Genetic Effects on Phenotype. PLoS Genetics, 2013, 9, e1003803.	1.5	72
122	Multiple Genomic Changes Associated with Reorganization of Gene Regulation and Adaptation in Yeast. Molecular Biology and Evolution, 2013, 30, 1514-1526.	3.5	23
123	Natural sequence variants of yeast environmental sensors confer cellâ€ŧo ell expression variability. Molecular Systems Biology, 2013, 9, 695.	3.2	42
124	The Role of Ctk1 Kinase in Termination of Small Non-Coding RNAs. PLoS ONE, 2013, 8, e80495.	1.1	15
125	Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution. PLoS Genetics, 2012, 8, e1002876.	1.5	48
126	Genetic Modifiers of Chromatin Acetylation Antagonize the Reprogramming of Epi-Polymorphisms. PLoS Genetics, 2012, 8, e1002958.	1.5	7

#	Article	IF	CITATIONS
127	Genome-wide H4 K16 acetylation by SAS-I is deposited independently of transcription and histone exchange. Nucleic Acids Research, 2012, 40, 65-74.	6.5	60
128	Genome-Wide Polyadenylation Site Mapping. Methods in Enzymology, 2012, 513, 271-296.	0.4	21
129	Silencing of Genes and Alleles by RNAi in Anopheles gambiae. Methods in Molecular Biology, 2012, 923, 161-176.	0.4	8
130	Set3 HDAC Mediates Effects of Overlapping Noncoding Transcription on Gene Induction Kinetics. Cell, 2012, 150, 1158-1169.	13.5	176
131	Gene Loops Enhance Transcriptional Directionality. Science, 2012, 338, 671-675.	6.0	219
132	Rrp6p Controls mRNA Poly(A) Tail Length and Its Decoration with Poly(A) Binding Proteins. Molecular Cell, 2012, 47, 267-280.	4.5	69
133	Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell, 2012, 149, 1393-1406.	13.5	1,765
134	Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Molecular Cell, 2012, 48, 409-421.	4.5	218
135	RNA Polymerase II Collision Interrupts Convergent Transcription. Molecular Cell, 2012, 48, 365-374.	4.5	149
136	Genome-wide survey of post-meiotic segregation during yeast recombination. Genome Biology, 2011, 12, R36.	3.8	22
137	Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability. Molecular Cell, 2011, 41, 21-32.	4.5	301
138	Functional consequences of bidirectional promoters. Trends in Genetics, 2011, 27, 267-276.	2.9	194
139	Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1058-1063.	3.3	124
140	Accumulation of noncoding RNA due to an RNase P defect in <i>Saccharomyces cerevisiae</i> . Rna, 2011, 17, 1441-1450.	1.6	34
141	Antisense expression increases gene expression variability and locus interdependency. Molecular Systems Biology, 2011, 7, 468.	3.2	173
142	A yeast-based assay identifies drugs active against human mitochondrial disorders. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11989-11994.	3.3	73
143	Genome-Wide Transcriptome Analysis in Yeast Using High-Density Tiling Arrays. Methods in Molecular Biology, 2011, 759, 107-123.	0.4	8
144	Genetic analysis of variation in transcription factor binding in yeast. Nature, 2010, 464, 1187-1191.	13.7	162

#	Article	IF	CITATIONS
145	The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis. PLoS Genetics, 2010, 6, e1001109.	1.5	89
146	Antagonistic Changes in Sensitivity to Antifungal Drugs by Mutations of an Important ABC Transporter Gene in a Fungal Pathogen. PLoS ONE, 2010, 5, e11309.	1.1	17
147	Natural Single-Nucleosome Epi-Polymorphisms in Yeast. PLoS Genetics, 2010, 6, e1000913.	1.5	14
148	High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biology, 2010, 11, R24.	13.9	99
149	Genomeâ€wide allele―and strandâ€specific expression profiling. Molecular Systems Biology, 2009, 5, 274.	3.2	31
150	Array-based genotyping in <i>S.cerevisiae</i> using semi-supervised clustering. Bioinformatics, 2009, 25, 1056-1062.	1.8	7
151	<i>Trans</i> -acting antisense RNAs mediate transcriptional gene cosuppression in <i>S. cerevisiae</i> . Genes and Development, 2009, 23, 1534-1545.	2.7	138
152	Bidirectional promoters generate pervasive transcription in yeast. Nature, 2009, 457, 1033-1037.	13.7	872
153	Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature, 2009, 457, 1038-1042.	13.7	557
154	Dissecting the Genetic Basis of Resistance to Malaria Parasites in <i>Anopheles gambiae</i> . Science, 2009, 326, 147-150.	6.0	106
155	High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature, 2008, 454, 479-485.	13.7	554
156	Identification of mitochondrial disease genes through integrative analysis of multiple datasets. Methods, 2008, 46, 248-255.	1.9	10
157	Systematic screens for human disease genes, from yeast to human and back. Molecular BioSystems, 2008, 4, 18-29.	2.9	45
158	Sequential Elimination of Major-Effect Contributors Identifies Additional Quantitative Trait Loci Conditioning High-Temperature Growth in Yeast. Genetics, 2008, 180, 1661-1670.	1.2	145
159	Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Research, 2007, 35, e128.	6.5	180
160	Genome sequencing and comparative analysis of <i>Saccharomyces cerevisiae</i> strain YJM789. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12825-12830.	3.3	240
161	Mosaic Genome Architecture of the Anopheles gambiae Species Complex. PLoS ONE, 2007, 2, e1249.	1.1	41
162	Capturing cellular machines by systematic screens of protein complexes. Trends in Microbiology, 2006, 14, 336-339.	3.5	10

#	ARTICLE	IF	CITATIONS
163	Assessing Systems Properties of Yeast Mitochondria through an Interaction Map of the Organelle. PLoS Genetics, 2006, 2, e170.	1.5	67
164	Complex Genetic Interactions in a Quantitative Trait Locus. PLoS Genetics, 2006, 2, e13.	1.5	117
165	Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics, 2006, 22, 1963-1970.	1.8	134
166	A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5320-5325.	3.3	613
167	Elevated evolutionary rates in the laboratory strain of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1092-1097.	3.3	90
168	Re-analysis of data and its integration. FEBS Letters, 2005, 579, 1802-1807.	1.3	8
169	Integrative Analysis of the Mitochondrial Proteome in Yeast. PLoS Biology, 2004, 2, e160.	2.6	181
170	Maximizing the potential of functional genomics. Nature Reviews Genetics, 2004, 5, 190-201.	7.7	83
171	Role of duplicate genes in genetic robustness against null mutations. Nature, 2003, 421, 63-66.	13.7	790
172	Evolutionary Rate in the Protein Interaction Network. Science, 2002, 296, 750-752.	6.0	798
173	Systematic screen for human disease genes in yeast. Nature Genetics, 2002, 31, 400-404.	9.4	503
174	Gene function on a genomic scale. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 151-163.	1.2	5
175	Dissecting the architecture of a quantitative trait locus in yeast. Nature, 2002, 416, 326-330.	13.7	524
176	Transcriptional regulation and function during the human cell cycle. Nature Genetics, 2001, 27, 48-54.	9.4	399
177	Combining genome sequences and new technologies for dissecting the genetics of complex phenotypes. Trends in Plant Science, 2000, 5, 397-401.	4.3	12
178	High-Density Arrays and Insights into Genome function. Biotechnology and Genetic Engineering Reviews, 2000, 17, 109-146.	2.4	11
179	A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell, 1998, 2, 65-73.	4.5	1,927