Claudio Gasperini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4291428/publications.pdf Version: 2024-02-01

		81900	79698
121	6,144	39	73
papers	citations	h-index	g-index
123	123	123	6795
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurology, The, 2016, 15, 292-303.	10.2	679
2	Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet, The, 1999, 353, 964-969.	13.7	476
3	Diseaseâ€Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Annals of Neurology, 2021, 89, 780-789.	5.3	370
4	2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurology, The, 2021, 20, 653-670.	10.2	302
5	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	5.3	295
6	The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology, 2018, 14, 199-213.	10.1	157
7	MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nature Reviews Neurology, 2020, 16, 171-182.	10.1	150
8	Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis. PLoS Pathogens, 2013, 9, e1003220.	4.7	132
9	Effects of Bacille Calmette-Guérin after the first demyelinating event in the CNS. Neurology, 2014, 82, 41-48.	1.1	128
10	Humoral- and T-Cell–Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients With MS Using Different Disease-Modifying Therapies. Neurology, 2022, 98, .	1.1	125
11	Predictors of long–term clinical response to interferon beta therapy in relapsing multiple sclerosis. Journal of Neurology, 2006, 253, 287-293.	3.6	113
12	Brain atrophy in relapsing-remitting multiple sclerosis: relationship with †black holes', disease duration and clinical disability. Journal of the Neurological Sciences, 2000, 174, 85-91.	0.6	110
13	Assessing response to interferon-Î ² in a multicenter dataset of patients with MS. Neurology, 2016, 87, 134-140.	1.1	98
14	Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study. Lancet Neurology, The, 2018, 17, 133-142.	10.2	98
15	Unraveling treatment response in multiple sclerosis. Neurology, 2019, 92, 180-192.	1.1	88
16	DMTs and Covidâ€19 severity in MS: a pooled analysis from Italy and France. Annals of Clinical and Translational Neurology, 2021, 8, 1738-1744.	3.7	86
17	Escalation to natalizumab or switching among immunomodulators in relapsing multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 64-71.	3.0	85
18	Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Annals of Neurology, 2013, 73, 626-636.	5.3	83

#	Article	IF	CITATIONS
19	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	5.3	79
20	Serum lactate as a novel potential biomarker in multiple sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1137-1143.	3.8	77
21	Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis. PLoS ONE, 2011, 6, e19452.	2.5	74
22	T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients. PLoS ONE, 2011, 6, e21386.	2.5	64
23	Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology, 2013, 80, 2090-2094.	1.1	63
24	Further study on the specificity and incidence of neutralizing antibodies to interferon (IFN) in relapsing remitting multiple sclerosis patients treated with IFN beta-1a or IFN beta-1b. Journal of the Neurological Sciences, 1999, 168, 131-136.	0.6	61
25	Fate of neutralizing and binding antibodies to IFN beta in MS patients treated with IFN beta for 6 years. Journal of the Neurological Sciences, 2003, 215, 3-8.	0.6	61
26	Topiramate Relieves Idiopathic and Symptomatic Trigeminal Neuralgia. Journal of Pain and Symptom Management, 2001, 21, 367-368.	1.2	56
27	The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis. Journal of Neuroimmunology, 2005, 167, 131-137.	2.3	56
28	Prolonged-release fampridine and walking and balance in MS: randomised controlled MOBILE trial. Multiple Sclerosis Journal, 2016, 22, 212-221.	3.0	56
29	T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17Âin multiple sclerosis. Clinical Science, 2015, 129, 291-303.	4.3	55
30	Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis. Neurology, 2013, 80, 234-241.	1.1	53
31	mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 448-450.	1.9	53
32	Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: Relationship to clinical parameters. Journal of Magnetic Resonance Imaging, 1996, 6, 580-584.	3.4	50
33	New oral drugs for multiple sclerosis. Neurological Sciences, 2009, 30, 179-183.	1.9	49
34	Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110195.	3.5	48
35	Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Molecular Neurobiology, 2017, 54, 7520-7533.	4.0	47
36	Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: an expert consensus. Journal of Neurology, 2021, 268, 3961-3968.	3.6	47

#	Article	IF	CITATIONS
37	Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naÃ ⁻ ve patients with multiple sclerosis. Journal of Neurology, 2017, 264, 284-294.	3.6	44
38	"Better explanations―in multiple sclerosis diagnostic workup. Neurology, 2019, 92, e2527-e2537.	1.1	44
39	Pharmacology and clinical efficacy of dimethyl fumarate (BC-12) for treatment of relapsing–remitting multiple sclerosis. Therapeutics and Clinical Risk Management, 2014, 10, 229.	2.0	43
40	FoxP3 isoforms and PD-1 expression by T regulatory cells in multiple sclerosis. Scientific Reports, 2018, 8, 3674.	3.3	42
41	Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: implication in peripheral inflammation. Scientific Reports, 2018, 8, 1319.	3.3	41
42	Lifespan normative data on rates of brain volume changes. Neurobiology of Aging, 2019, 81, 30-37.	3.1	40
43	Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, Fingolimod will change therapeutic paradigm approach. Drug Design, Development and Therapy, 2012, 6, 175.	4.3	38
44	No increase of serum autoantibodies during therapy with recombinant human interferon-β1a in relapsing-remitting multiple sclerosis. Acta Neurologica Scandinavica, 1997, 96, 372-374.	2.1	36
45	CD28 ligation in the absence of TCR stimulation up-regulates IL-17A and pro-inflammatory cytokines in relapsing-remitting multiple sclerosis T lymphocytes. Immunology Letters, 2014, 158, 134-142.	2.5	36
46	Prevalence of multiple sclerosis in the Lazio region, Italy: use of an algorithm based on health information systems. Journal of Neurology, 2016, 263, 751-759.	3.6	35
47	Fingolimod vs dimethyl fumarate in multiple sclerosis. Neurology, 2018, 91, e153-e161.	1.1	35
48	Induction Versus Escalation in Multiple Sclerosis: A 10-Year Real World Study. Neurotherapeutics, 2020, 17, 994-1004.	4.4	34
49	Rapid benefits of a new formulation of subcutaneous interferon beta-1a in relapsing—remitting multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 888-892.	3.0	31
50	Efficacy and safety of subcutaneous interferon beta-1a in relapsing–remitting multiple sclerosis: Further outcomes from the IMPROVE study. Journal of the Neurological Sciences, 2012, 312, 97-101.	0.6	31
51	Performance of the 2017 and 2010 Revised McDonald Criteria in Predicting MS Diagnosis After a Clinically Isolated Syndrome. Neurology, 2022, 98, .	1.1	31
52	CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells, 2019, 8, 575.	4.1	30
53	Minimal evidence of disease activity (MEDA) in relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 271-277.	1.9	29
54	Age-related adverse events of disease-modifying treatments for multiple sclerosis: A meta-regression. Multiple Sclerosis Journal, 2021, 27, 1391-1402.	3.0	27

#	Article	IF	CITATIONS
55	Prognostic Accuracy of NEDA-3 in Long-term Outcomes of Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	27
56	Quantitative magnetic resonance analysis in vascular dementia. Journal of Neurology, 1997, 244, 246-251.	3.6	26
57	Magnetic resonance imaging outcome of new enhancing lesions in relapsing-remitting multiple sclerosis patients treated with interferon \hat{I}^2 1a. Journal of Neurology, 1999, 246, 443-448.	3.6	26
58	Three-Tesla MRI does not improve the diagnosis of multiple sclerosis. Neurology, 2018, 91, e249-e257.	1.1	26
59	Safety and Tolerability in Relapsing-Remitting Multiple Sclerosis Patients Treated With High-Dose Subcutaneous Interferon-Beta by Rebiject Autoinjection Over a 1-Year Period. Clinical Neuropharmacology, 2008, 31, 167-172.	0.7	25
60	Neutralizing antibodies explain the poor clinical response to Interferon beta in a small proportion of patients with Multiple Sclerosis: a retrospective study. BMC Neurology, 2009, 9, 54.	1.8	25
61	Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients. International Journal of Molecular Sciences, 2016, 17, 2009.	4.1	25
62	The p38 mitogenâ€activated protein kinase cascade modulates T helper type 17 differentiation and functionality in multiple sclerosis. Immunology, 2015, 146, 251-263.	4.4	24
63	Natalizumab discontinuation in patients with multiple sclerosis: Profiling risk and benefits at therapeutic crossroads. Multiple Sclerosis Journal, 2015, 21, 1713-1722.	3.0	23
64	A multicentRE observational analysiS of PErsistenCe to Treatment in the new multiple sclerosis era: the RESPECT study. Journal of Neurology, 2018, 265, 1174-1183.	3.6	23
65	Increased risk of death from COVID-19 in multiple sclerosis: a pooled analysis of observational studies. Journal of Neurology, 2022, 269, 1114-1120.	3.6	23
66	The prevalence of multiple sclerosis in central Italy. Multiple Sclerosis Journal, 2010, 16, 1432-1436.	3.0	22
67	Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study. Multiple Sclerosis Journal, 2019, 25, 352-360.	3.0	22
68	Effect of dalfampridine on information processing speed impairment in multiple sclerosis. Neurology, 2019, 93, e733-e746.	1.1	21
69	Anti lingo 1 (opicinumab) a new monoclonal antibody tested in relapsing remitting multiple sclerosis. Expert Review of Neurotherapeutics, 2017, 17, 1081-1089.	2.8	20
70	Induction treatment strategy in multiple sclerosis: a review of past experiences and future perspectives. Multiple Sclerosis and Demyelinating Disorders, 2018, 3, .	1.1	20
71	Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study. NeuroImage: Clinical, 2021, 29, 102549.	2.7	20
72	Efficacy and safety of laquinimod in multiple sclerosis: current status. Therapeutic Advances in Neurological Disorders, 2013, 6, 343-352.	3.5	18

#	Article	IF	CITATIONS
73	Real world experience with teriflunomide in multiple sclerosis: the TER-Italy study. Journal of Neurology, 2021, 268, 2922-2932.	3.6	18
74	Determinants of COVID-19-related lethality in multiple sclerosis: a meta-regression of observational studies. Journal of Neurology, 2022, 269, 2275-2285.	3.6	18
75	Emerging oral drugs for multiple sclerosis. Expert Opinion on Emerging Drugs, 2008, 13, 465-477.	2.4	17
76	Thyroid autoimmunity and dysfunction in multiple sclerosis patients during long-term treatment with interferon beta or glatiramer acetate: an Italian multicenter study. Multiple Sclerosis Journal, 2014, 20, 1265-1268.	3.0	17
77	Illness perceptions and psychological adjustment among persons with multiple sclerosis: the mediating role of coping strategies and social support. Disability and Rehabilitation, 2020, 42, 3780-3792.	1.8	17
78	The Contribution of Illness Beliefs, Coping Strategies, and Social Support to Perceived Physical Health and Fatigue in Multiple Sclerosis. Journal of Clinical Psychology in Medical Settings, 2021, 28, 149-160.	1.4	17
79	Scoring the 10â€year risk of ambulatory disability in multiple sclerosis: the RoAD score. European Journal of Neurology, 2021, 28, 2533-2542.	3.3	16
80	Cumulative effect of a weekly low dose of interferon beta 1a on standard and triple dose contrast-enhanced MRI from multiple sclerosis patients. Journal of the Neurological Sciences, 1999, 171, 130-134.	0.6	15
81	Advances in the treatment of relapsing–remitting multiple sclerosis – critical appraisal of fingolimod. Therapeutics and Clinical Risk Management, 2013, 9, 73.	2.0	15
82	How much do periventricular lesions assist in distinguishing migraine with aura from CIS?. Neurology, 2019, 92, e1739-e1744.	1.1	15
83	T cell response to myelin basic protein before and after treatment with interferon beta in multiple sclerosis. Journal of Neuroimmunology, 1999, 99, 91-96.	2.3	14
84	Distinct Expression of Inflammatory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells, 2019, 8, 533.	4.1	14
85	Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554.	3.6	14
86	Distinct influence of different vascular risk factors on white matter brain lesions in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 388-391.	1.9	14
87	Dynamics of pseudoâ€atrophy in RRMS reveals predominant gray matter compartmentalization. Annals of Clinical and Translational Neurology, 2021, 8, 623-630.	3.7	14
88	MxA mRNA Quantification and Disability Progression in Interferon Beta-Treated Multiple Sclerosis Patients. PLoS ONE, 2014, 9, e94794.	2.5	14
89	Serial gadolinium-DTPA of spinal cord MRI in multiple sclerosis: triple vs. single dose. Magnetic Resonance Imaging, 2000, 18, 1183-1186.	1.8	13
90	Emerging oral drugs for relapsing–remitting multiple sclerosis. Expert Opinion on Emerging Drugs, 2011, 16, 697-712.	2.4	13

#	Article	IF	CITATIONS
91	Visual pathway neurodegeneration winged by mitochondrial dysfunction. Annals of Clinical and Translational Neurology, 2015, 2, 140-150.	3.7	13
92	Defining the course of tumefactive multiple sclerosis: A large retrospective multicentre study. European Journal of Neurology, 2021, 28, 1299-1307.	3.3	12
93	Shift of multiple sclerosis onset towards older age. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1137-1139.	1.9	12
94	Prolonged-release fampridine treatment improved subject-reported impact of multiple sclerosis: Item-level analysis of the MSIS-29. Journal of the Neurological Sciences, 2016, 370, 123-131.	0.6	11
95	Impaired cortical deactivation during hand movement in the relapsing phase of multiple sclerosis: a cross-sectional and longitudinal fMRI study. Multiple Sclerosis Journal, 2011, 17, 1177-1184.	3.0	10
96	Drugs in clinical development for multiple sclerosis: focusing on anti-CD20 antibodies. Expert Opinion on Investigational Drugs, 2013, 22, 1243-1253.	4.1	10
97	PML risk is the main factor driving the choice of discontinuing natalizumab in a large multiple sclerosis population: results from an Italian multicenter retrospective study. Journal of Neurology, 2022, 269, 933-944.	3.6	10
98	Treatment response scoring systems to assess long-term prognosis in self-injectable DMTs relapsing–remitting multiple sclerosis patients. Journal of Neurology, 2022, 269, 452-459.	3.6	10
99	A comparison of the sensitivity of monthly unenhanced and enhanced MRI techniques in detecting new multiple sclerosis lesions. Journal of Neurology, 1999, 246, 97-106.	3.6	9
100	Early transient asymptomatic neutropenia associated with alemtuzumab treatment in multiple sclerosis: a case report. Journal of Neurology, 2018, 265, 2152-2153.	3.6	7
101	Proteolytic Balance in Patients with Multiple Sclerosis During Interferon Treatment. Journal of Interferon and Cytokine Research, 2002, 22, 689-692.	1.2	6
102	Emerging oral treatments in multiple sclerosis – clinical utility of cladribine tablets. Therapeutics and Clinical Risk Management, 2010, 6, 391.	2.0	6
103	Identifying Relapses in Multiple Sclerosis Patients through Administrative Data: A Validation Study in the Lazio Region, Italy. Neuroepidemiology, 2017, 48, 171-178.	2.3	6
104	Exit strategies for "needle fatigue―in multiple sclerosis: a propensity score-matched comparison study. Journal of Neurology, 2020, 267, 694-702.	3.6	6
105	EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e876.	6.0	6
106	Tailored Vessel-Catheter Diameter Ratio in a Direct Aspiration First-Pass Technique: Is It a Matter of Caliber?. American Journal of Neuroradiology, 2021, 42, 546-550.	2.4	6
107	Dalfampridine to Improve Balance in Multiple Sclerosis: Substudy from a Randomized Placebo-Controlled Trial. Neurotherapeutics, 2020, 17, 704-709.	4.4	5
108	A systematic review of European regional and national guidelines: a focus on the recommended use of nabiximols in the management of spasticity in multiple sclerosis. Expert Review of Neurotherapeutics, 2022, 22, 499-511.	2.8	5

#	Article	IF	CITATIONS
109	From High- to Low-Frequency Administered Interferon-Beta for Multiple Sclerosis: A Multicenter Study. European Neurology, 2014, 71, 233-241.	1.4	4
110	Mapping the Progressive Treatment-Related Reduction of Active MRI Lesions in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 585296.	2.4	4
111	A cross-sectional, multicentre study of the therapeutic management of multiple sclerosis relapses in Italy. Neurological Sciences, 2013, 34, 197-203.	1.9	3
112	Resiquimod-Mediated Activation of Plasmacytoid Dendritic Cells Is Amplified in Multiple Sclerosis. International Journal of Molecular Sciences, 2019, 20, 2811.	4.1	3
113	The role of pontine lesion location in differentiating multiple sclerosis from vascular risk factor-related small vessel disease. Multiple Sclerosis Journal, 2021, 27, 968-972.	3.0	3
114	Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references. NeuroImage: Clinical, 2021, 30, 102659.	2.7	3
115	Natalizumab treatment and pregnancy in multiple sclerosis: A reappraisal of maternal and infant outcomes after 6 years. Multiple Sclerosis Journal, 2022, 28, 2137-2141.	3.0	3
116	Harmonization of real-world studies in multiple sclerosis: Retrospective analysis from the rirems group. Multiple Sclerosis and Related Disorders, 2020, 45, 102394.	2.0	2
117	Unilateral meningitis: unusual central nervous system involvement in rheumatoid arthritis. Practical Neurology, 2021, 21, 167-168.	1.1	2
118	Ozoneâ€induced encephalopathy: A novel iatrogenic entity. European Journal of Neurology, 2021, 28, 2471-2478.	3.3	2
119	Efficacy of prolonged-release fampridine <i>versus</i> placebo on walking ability, dynamic and static balance, physical impact of multiple sclerosis, and quality of life: an integrated analysis of MOBILE and ENHANCE. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642210903.	3.5	1
120	Bridging Therapies With Injectable Immunomodulatory Drugs in the Management of Multiple Sclerosis: A Delphi Survey of an Italian Expert Panel of Neurologists. Frontiers in Neurology, 0, 13, .	2.4	1
121	Dalfampridine improves slowed processing speed in multiple sclerosis patients with mild motor disability: post hoc analysis of a randomized controlled trial. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110112.	3.5	0