
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution, Dynamics, and Diversity of Questing Ticks in the Lower Midwest. Journal of Medical Entomology, 2022, 59, 273-282.	1.8	8

2 Novel genome characteristics contribute to the invasiveness of <i>Phragmites australis</i> (common) Tj ETQq0 0 0.rgBT /Overlock 10 T

3	Reshaping the Tree of Life: ecological implications of evolution in the Anthropocene. Frontiers in Ecology and the Environment, 2022, 20, 111-116.	4.0	2
4	Invasive grass litter suppresses a native grass species and promotes disease. Ecosphere, 2022, 13, .	2.2	4
5	Host blood meal identity modifies vector gene expression and competency. Molecular Ecology, 2022, 31, 2698-2711.	3.9	8
6	Plant-Microbial Symbioses in Coastal Systems: Their Ecological Importance and Role in Coastal Restoration. Estuaries and Coasts, 2022, 45, 1805-1822.	2.2	12
7	Fungal endophyte effects on invasive Phragmites australis performance in field and growth chamber environments. Fungal Ecology, 2022, 57-58, 101153.	1.6	1
8	Why Do Plant-Pathogenic Fungi Produce Mycotoxins? Potential Roles for Mycotoxins in the Plant Ecosystem. Phytopathology, 2022, 112, 2044-2051.	2.2	4
9	Phylogenetic Patterns of Swainsonine Presence in Morning Glories. Frontiers in Microbiology, 2022, 13, 871148.	3.5	3
10	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	4.1	122
11	Using convolutional neural networks for tick image recognition – a preliminary exploration. Experimental and Applied Acarology, 2021, 84, 607-622.	1.6	6
12	Conspecific leaf litter induces negative feedbacks in Asteraceae seedlings. Ecology, 2021, 102, e03557.	3.2	5
13	Diversification of ergot alkaloids and heritable fungal symbionts in morning glories. Communications Biology, 2021, 4, 1362.	4.4	12
14	An integrated assessment of the potential impacts of climate change on Indiana forests. Climatic Change, 2020, 163, 1917-1931.	3.6	5
15	Large-spored <i>Drechslera gigantea</i> is a <i>Bipolaris</i> species causing disease on the invasive grass <i>Microstegium vimineum</i> . Mycologia, 2020, 112, 921-931.	1.9	10
16	Foliar fungal endophyte community structure is independent of phylogenetic relatedness in an Asteraceae common garden. Ecology and Evolution, 2020, 10, 13895-13912.	1.9	10
17	Disease in Invasive Plant Populations. Annual Review of Phytopathology, 2020, 58, 97-117.	7.8	11
	Release from below- and aboveground natural enemies contributes to invasion success of a temperate		

#	Article	IF	CITATIONS
19	(2786) Proposal to change the conserved type of <i>lpomoea</i> , nom. cons. (<i>Convolvulaceae</i>). Taxon, 2020, 69, 1369-1371.	0.7	8
20	Biodiversity of Convolvulaceous species that contain ergot alkaloids, indole diterpene alkaloids, and swainsonine. Biochemical Systematics and Ecology, 2019, 86, 103921.	1.3	10
21	Decreased Root-Knot Nematode Gall Formation in Roots of the Morning Glory Ipomoea tricolor Symbiotic with Ergot Alkaloid-Producing Fungal Periglandula Sp Journal of Chemical Ecology, 2019, 45, 879-887.	1.8	8
22	Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in <i>Theobroma cacao</i> . New Phytologist, 2019, 222, 1573-1583.	7.3	71
23	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	4.0	29
24	Tree mycorrhizal type predicts withinâ€site variability in the storage and distribution of soil organic matter. Global Change Biology, 2018, 24, 3317-3330.	9.5	167
25	Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant and Soil, 2018, 422, 183-194.	3.7	67
26	Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia, 2018, 186, 195-204.	2.0	44
27	Long-term studies are needed to reveal the effects of pathogen accumulation on invaded plant communities. Biological Invasions, 2018, 20, 11-12.	2.4	2
28	Emerging pathogens can suppress invaders and promote native species recovery. Biological Invasions, 2018, 20, 5-8.	2.4	18
29	Foliar fungal endophyte communities are structured by environment but not host ecotype in <i>Panicum virgatum</i> (switchgrass). Ecology, 2018, 99, 2703-2711.	3.2	59
30	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	12.6	6
31	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	12.6	9
32	Native and Invasive Woody Species Differentially Respond to Forest Edges and Forest Successional Age. Forests, 2018, 9, 381.	2.1	10
33	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	5.8	330
34	Sapling growth rates reveal conspecific negative density dependence in a temperate forest. Ecology and Evolution, 2017, 7, 7661-7671.	1.9	23
35	Effects of a nonâ€native grass invasion decline over time. Journal of Ecology, 2017, 105, 1475-1484.	4.0	24
36	Negative plantâ€phyllosphere feedbacks in native Asteraceae hosts – a novel extension of the plantâ€soil feedback framework. Ecology Letters, 2017, 20, 1064-1073.	6.4	50

#	Article	IF	CITATIONS
37	From endosymbionts to host communities: factors determining the reproductive success of arthropod vectors. Oecologia, 2017, 184, 859-871.	2.0	11
38	Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170641.	2.6	70
39	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	12.6	222
40	Emergence and accumulation of novel pathogens suppress anÂinvasive species. Ecology Letters, 2016, 19, 469-477.	6.4	99
41	Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation. Microbial Ecology, 2016, 72, 621-632.	2.8	78
42	Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biological Invasions, 2016, 18, 2703-2716.	2.4	49
43	Fire and nonâ€native grass invasion interact to suppress tree regeneration in temperate deciduous forests. Journal of Applied Ecology, 2015, 52, 992-1000.	4.0	30
44	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Frontiers in Microbiology, 2015, 6, 869.	3.5	118
45	Systematics and Morphology. Agronomy, 2015, , 11-30.	0.2	7
46	Phylogenetic and chemotypic diversity of <i>Periglandula</i> species in eight new morning glory hosts (Convolvulaceae). Mycologia, 2015, 107, 667-678.	1.9	25
47	Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Frontiers in Microbiology, 2015, 6, 95.	3.5	91
48	Concordance of bacterial communities of two tick species and blood of their shared rodent host. Molecular Ecology, 2015, 24, 2566-2579.	3.9	100
49	Interactive effects of a nonâ€native invasive grass <i>Microstegium vimineum</i> and herbivore exclusion on experimental tree regeneration under differing forest management. Journal of Applied Ecology, 2015, 52, 210-219.	4.0	23
50	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	9.5	473
51	Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities. PLoS ONE, 2014, 9, e109677.	2.5	21
52	Conspecific negative densityâ€dependent mortality and the structure of temperate forests. Ecology, 2014, 95, 2493-2503.	3.2	81
53	A Mouthful of Maggots. BioScience, 2014, 64, 1189-1191.	4.9	2
54	Are there evolutionary consequences of plant–soil feedbacks along soil gradients?. Functional Ecology, 2014, 28, 55-64.	3.6	64

#	Article	lF	CITATIONS
55	Defensive symbiosis: a microbial perspective. Functional Ecology, 2014, 28, 293-298.	3.6	79
56	Tick community composition in Midwestern US habitats in relation to sampling method and environmental conditions. Experimental and Applied Acarology, 2014, 64, 109-119.	1.6	35
57	Effects of abundant white-tailed deer on vegetation, animals, mycorrhizal fungi, and soils. Forest Ecology and Management, 2014, 320, 39-49.	3.2	76
58	Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95, 1045-1054.	3.2	144
59	Differential Allocation of Seed-Borne Ergot Alkaloids During Early Ontogeny of Morning Glories (Convolvulaceae). Journal of Chemical Ecology, 2013, 39, 919-930.	1.8	26
60	Associations between innate immune function and ectoparasites in wild rodent hosts. Parasitology Research, 2013, 112, 1763-1770.	1.6	21
61	Demographic responses of the invasive annual grass Microstegium vimineum to prescribed fires and herbicide. Forest Ecology and Management, 2013, 308, 207-213.	3.2	19
62	Pathogen accumulation and longâ€ŧerm dynamics of plant invasions. Journal of Ecology, 2013, 101, 607-613.	4.0	171
63	Production of the Alkaloid Swainsonine by a Fungal Endosymbiont of the Ascomycete Order Chaetothyriales in the Host <i>Ipomoea carnea</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 3797-3803.	5.2	66
64	Effects of Infection by <i>Arsenophonus</i> and <i>Rickettsia</i> Bacteria on the Locomotive Ability of the Ticks <i>Amblyomma americanum</i> , <i>Dermacentor variabilis</i> , and <i>Ixodes scapularis</i> . Journal of Medical Entomology, 2013, 50, 155-162.	1.8	31
65	The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME Journal, 2013, 7, 221-223.	9.8	107
66	Response to Comment on "Conspecific Negative Density Dependence and Forest Diversity― Science, 2012, 338, 469-469.	12.6	5
67	Microbial mutualists and biodiversity in ecosystems. , 2012, , 391-413.		2
68	Conspecific Negative Density Dependence and Forest Diversity. Science, 2012, 336, 904-907.	12.6	345
69	Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia, 2012, 170, 1089-1098.	2.0	63
70	Effects of trees on their recruits in the southern Appalachians, USA. Forest Ecology and Management, 2012, 263, 268-274.	3.2	13
71	Negative plant–soil feedbacks dominate seedling competitive interactions of North American successional grassland species. Journal of Vegetation Science, 2012, 23, 667-676.	2.2	8
72	Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121, 2090-2096.	2.7	67

#	Article	IF	CITATIONS
73	Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA. PLoS ONE, 2012, 7, e40680.	2.5	12
74	Variation in Specificity of Soil-Borne Pathogens from a Plant's Native Range versus Its Nonnative Range. International Journal of Ecology, 2011, 2011, 1-6.	0.8	5
75	Ecological consequences of pathogen accumulation on an invasive grass. Ecosphere, 2011, 2, art120.	2.2	38
76	Greater performance of introduced vs. native range populations of Microstegium vimineum across different light environments. Basic and Applied Ecology, 2011, 12, 350-359.	2.7	21
77	Invasive <i>Microstegium</i> populations consistently outperform native range populations across diverse environments. Ecology, 2011, 92, 2248-2257.	3.2	58
78	Non-native grass invasion suppresses forest succession. Oecologia, 2010, 164, 1029-1038.	2.0	115
79	Symbiosis research, technology, and education: Proceedings of the 6th International Symbiosis Society Congress held in Madison Wisconsin, USA, August 2009. Symbiosis, 2010, 51, 1-12.	2.3	1
80	The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 2010, 51, 139-148.	2.3	137
81	Non-native grass invasion alters native plant composition in experimental communities. Biological Invasions, 2010, 12, 1285-1294.	2.4	127
82	Variation for phenotypic plasticity among populations of an invasive exotic grass. Plant Ecology, 2010, 207, 297-306.	1.6	51
83	Virulence of soilâ€borne pathogens and invasion by <i>Prunus serotina</i> . New Phytologist, 2010, 186, 484-495.	7.3	104
84	Managing plant symbiosis: fungal endophyte genotype alters plant community composition. Journal of Applied Ecology, 2010, 47, 468-477.	4.0	67
85	Spatial and Temporal Patterns of Rust Infection on Jewelweed (<i>Impatiens capensis</i>). International Journal of Plant Sciences, 2010, 171, 529-537.	1.3	16
86	Searching for Evidence against the Mutualistic Nature of Hereditary Symbioses: A Comment on Faeth. American Naturalist, 2010, 176, 99-103.	2.1	18
87	Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species. Acta Oecologica, 2010, 36, 530-536.	1.1	31
88	The Effect of Periodical Cicadas on Growth of Five Tree Species in Midwestern Deciduous Forests. American Midland Naturalist, 2010, 164, 173-186.	0.4	20
89	Meta-Analysis of Co-Infections in Ticks. Israel Journal of Ecology and Evolution, 2010, 56, 417-431.	0.6	11
90	Differential susceptibility of tree species to oviposition by periodical cicadas. Ecological Entomology, 2009. 34. 277-286.	2.2	14

#	Article	IF	CITATIONS
91	Effects of oviposition by periodical cicadas on tree growth. Canadian Journal of Forest Research, 2009, 39, 1688-1697.	1.7	9
92	Spatial variation in soilâ€borne disease dynamics of a temperate tree, Prunus serotina. Ecology, 2009, 90, 2984-2993.	3.2	68
93	Strains of <i>Ehrlichia chaffeensis</i> in Southern Indiana, Kentucky, Mississippi, and North Carolina. Journal of Medical Entomology, 2009, 46, 1468-1473.	1.8	4
94	Impact of a Horizontally Transmitted Endophyte, <i>Balansia henningsiana</i> , on Growth and Drought Tolerance of <i>Panicum rigidulum</i> . International Journal of Plant Sciences, 2009, 170, 599-608.	1.3	13
95	Invasive plant removal method determines native plant community responses. Journal of Applied Ecology, 2009, 46, 434-442.	4.0	138
96	Effects of roads and forest successional age on experimental plant invasions. Biological Conservation, 2009, 142, 2531-2537.	4.1	70
97	Variation in horizontal and vertical transmission of the endophyte <i>Epichloë elymi</i> infecting the grass <i>Elymus hystrix</i> . New Phytologist, 2008, 179, 236-246.	7.3	29
98	An invasive plant–fungal mutualism reduces arthropod diversity. Ecology Letters, 2008, 11, 831-840.	6.4	99
99	Microbial communities and interactions in the lone star tick, <i>Amblyomma americanum</i> . Molecular Ecology, 2008, 17, 4371-4381.	3.9	156
100	Exotic Grass Invasion Reduces Survival of <i>Amblyomma americanum</i> and <i>Dermacentor variabilis</i> Ticks (Acari: Ixodidae). Journal of Medical Entomology, 2008, 45, 867-872.	1.8	42
101	Infection and Co-infection Rates of <i>Anaplasma phagocytophilum</i> Variants, <i>Babesia</i> spp., <i>Borrelia burgdorferi</i> , and the Rickettsial Endosymbiont in <i>Ixodes scapularis</i> (Acari: Ixodidae) from Sites in Indiana, Maine, Pennsylvania, and Wisconsin. Journal of Medical Entomology, 2008, 45, 289-297.	1.8	88
102	Exotic Grass Invasion Reduces Survival ofAmblyomma americanumandDermacentor variabilisTicks (Acari: Ixodidae). Journal of Medical Entomology, 2008, 45, 867-872.	1.8	51
103	Low Resource Availability Differentially Affects the Growth of Host Grasses Infected by Fungal Endophytes. International Journal of Plant Sciences, 2007, 168, 1269-1277.	1.3	18
104	Localization and Visualization of a <i>Coxiella</i> -Type Symbiont within the Lone Star Tick, <i>Amblyomma americanum</i> . Applied and Environmental Microbiology, 2007, 73, 6584-6594.	3.1	124
105	Experimental Light Treatments Affect Invasion Success and the Impact of Microstegium vimineum on the Resident Community. Natural Areas Journal, 2007, 27, 124-132.	0.5	41
106	FOREST SUCCESSION SUPPRESSED BY AN INTRODUCED PLANT–FUNGAL SYMBIOSIS. Ecology, 2007, 88, 18-2	5.3.2	111
107	Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems?. Fungal Biology Reviews, 2007, 21, 107-124.	4.7	107
108	Hybridization and the colonization of novel habitats by annual sunflowers. Genetica, 2007, 129, 149-165.	1.1	345

#	Article	IF	CITATIONS
109	Plant-fungus mutualism affects spider composition in successional fields. Ecology Letters, 2006, 9, 347-356.	6.4	44
110	Invasive shrub distribution varies with distance to roads and stand age in eastern deciduous forests in Indiana, USA. Plant Ecology, 2006, 184, 131-141.	1.6	104
111	Soil feedback and pathogen activity in Prunus serotina throughout its native range. Journal of Ecology, 2005, 93, 890-898.	4.0	103
112	Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia, 2005, 145, 595-604.	2.0	116
113	Invasive Plants can Inhibit Native Tree Seedlings: Testing Potential Allelopathic Mechanisms. Plant Ecology, 2005, 181, 153-165.	1.6	132
114	Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12465-12470.	7.1	176
115	Fungal Endophytes in Terrestrial Communities and Ecosystems. Mycology, 2005, , 423-442.	0.5	5
116	Epichloë glyceriae infection affects carbon translocation in the clonal grass Glyceria striata. New Phytologist, 2004, 164, 467-475.	7.3	21
117	Fungi and the food of the gods. Nature, 2004, 427, 401-402.	27.8	37
118	Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytologist, 2004, 162, 729-743.	7.3	49
119	Endophytic fungi alter relationships between diversity and ecosystem properties. Ecology Letters, 2004, 7, 42-51.	6.4	118
120	Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 2003, 6, 1046-1050.	6.4	322
121	Parasites lost. Nature, 2003, 421, 585-586.	27.8	45
122	GRASSROOTS ECOLOGY: PLANT–MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND DYNAMICS. Ecology, 2003, 84, 2281-2291.	3.2	601
123	Identification of Arsenophonus-type bacteria from the dog tick Dermacentor variabilis. Journal of Invertebrate Pathology, 2003, 83, 264-266.	3.2	37
124	SOIL PATHOGENS AND PRUNUS SEROTINA SEEDLING AND SAPLING GROWTH NEAR CONSPECIFIC TREES. Ecology, 2003, 84, 108-119.	3.2	159
125	Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses. American Naturalist, 2002, 160, S99-S127.	2.1	842
126	Infection by the systemic fungus Epichloe glyceriae and clonal growth of its host grass Glyceria striata. Oikos, 2002, 98, 37-46.	2.7	34

#	ŧ	Article	IF	CITATIONS
1	.27	INFLUENCE OF FUNGAL ENDOPHYTE INFECTION ON PLANT–SOIL FEEDBACK AND COMMUNITY INTERACTIONS. Ecology, 2001, 82, 500-509.	3.2	25
1	.28	Sex-ratio variation among Arisaema species with different patterns of gender diphasy. Plant Species Biology, 2001, 16, 139-149.	1.0	10
1	.29	Symbiosis and the Regulation of Communities. American Zoologist, 2001, 41, 810-824.	0.7	25
1	.30	Influence of Fungal Endophyte Infection on Plant-Soil Feedback and Community Interactions. Ecology, 2001, 82, 500.	3.2	53
1	.31	Effects of Tall Fescue Endophyte Infection and Population Density on Growth and Reproduction in Prairie Voles. Journal of Wildlife Management, 2000, 64, 122.	1.8	30
1	32	Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 2000, 404, 278-281.	27.8	793
1	.33	Potential versus actual contribution of vertical transmission to pathogen fitness. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 903-909.	2.6	30
1	.34	THE RED QUEEN HYPOTHESIS AND PLANT/PATHOGEN INTERACTIONS. Annual Review of Phytopathology, 1996, 34, 29-50.	7.8	194
1	.35	Isozyme evidence for host races of the fungus Atkinsonella hypoxylon (Clavicipitaceae) infecting the Danthonia (Poaceae) complex in the southern Appalachians. American Journal of Botany, 1996, 83, 1144-1152.	1.7	10
1	.36	Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology, 1996, 38, 191-201.	0.9	80
1	.37	Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytologist, 1996, 133, 727-733.	7.3	119
1	.38	Evolution and Stasis in Plant–Pathogen Associations. Ecology, 1996, 77, 997-1003.	3.2	31
1	.39	Isozyme Evidence for Host Races of the Fungus Atkinsonella hypoxylon (Clavicipitaceae) Infecting the Danthonia (Poaceae) Complex in the Southern Appalachians. American Journal of Botany, 1996, 83, 1144.	1.7	5
1	40	MITOCHONDRIAL DNA VARIATION IN THE FUNGUS <i>ATKINSONELLA HYPOXYLON</i> INFECTING SYMPATRIC <i>DANTHONIA</i> GRASSES. Evolution; International Journal of Organic Evolution, 1995, 49, 360-371.	2.3	14
1	.41	Environmental heterogeneity, fungal parasitism and the demography of the grass Stipa leucotricha. Oecologia, 1995, 103, 55-62.	2.0	12
1	42	Thinning Reduces the Effect of Rust Infection on Jewelweed (Impatiens Capensis). Ecology, 1995, 76, 1859-1862.	3.2	57
1	43	Correlates of pathogen species richness in the grass family. Canadian Journal of Botany, 1995, 73, 42-49.	1.1	42
1	.44	Differential growth of <i>Atkinsonella</i> species on host grass calli. Mycologia, 1994, 86, 667-673.	1.9	11

#	Article	IF	CITATIONS
145	Differential Growth of Atkinsonella Species on Host Grass Calli. Mycologia, 1994, 86, 667.	1.9	9
146	Hereditary symbiosis in the grass genus Danthonia. New Phytologist, 1994, 126, 223-231.	7.3	32
147	Fungal endophytes of plants: Biological and chemical diversity. Natural Toxins, 1993, 1, 147-149.	1.0	35
148	The ecology and evolution of endophytes. Agriculture, Ecosystems and Environment, 1993, 44, 39-64.	5.3	81
149	Effects of Insect Herbivory and Fungal Endophyte Infection on Competitive Interactions among Grasses. Ecology, 1993, 74, 1767-1777.	3.2	206
150	SIZEâ€ÐEPENDENT GENDER CHANGE IN GREEN DRAGON (ARISAEMA DRACONTIUM; ARACEAE). American Journal of Botany, 1993, 80, 769-777.	1.7	29
151	Balansia Pilulaeformis, an Epiphytic Species. Mycologia, 1993, 85, 527-534.	1.9	25
152	Nonreciprocal Compatibility BetweenEpichloë Typhinaand Four Host Grasses. Mycologia, 1993, 85, 157-163.	1.9	33
153	Size-Dependent Gender Change in Green Dragon (Arisaema dracontium; Araceae). American Journal of Botany, 1993, 80, 769.	1.7	12
154	Alkaloids ofStipa robusta (sleepygrass) infected with anAcremonium endophyte. Natural Toxins, 1992, 1, 84-88.	1.0	86
155	Parasitic castration of plants by fungi. Trends in Ecology and Evolution, 1991, 6, 162-166.	8.7	61
156	Fungitoxic Effects of Balansia Cyperi. Mycologia, 1991, 83, 288-295.	1.9	19
157	Avian seed preference and weight loss experiments: the effect of fungal endophyte-infected tall fescue seeds. Oecologia, 1991, 88, 296-302.	2.0	77
158	Effects of Fungal Endophytes on Interspecific and Intraspecific Competition in the Grasses Festuca arundinacea and Lolium perenne. Journal of Applied Ecology, 1991, 28, 194.	4.0	122
159	Fungitoxic Effects of Balansia cyperi. Mycologia, 1991, 83, 288.	1.9	13
160	Endophytes as Antagonists of Plant Pests. Brock/Springer Series in Contemporary Bioscience, 1991, , 331-357.	0.3	36
161	Comparative Demography of Three Graminoids Infected by Systemic, Clavicipitaceous Fungi. Ecology, 1990, 71, 558-570.	3.2	58
162	THE INCIDENCE AND EFFECTS OF HYBRIDIZATION BETWEEN CULTIVATED RICE AND ITS RELATED WEED RED RICE (<i>ORYZA SATIVA</i> L.). Evolution; International Journal of Organic Evolution, 1990, 44, 1000-1008.	2.3	134

#	Article	IF	CITATIONS
163	Significance of the fungus balansia cyperi infecting medicinal species of cyperus (Cyperaceae) from Amazonia. Economic Botany, 1990, 44, 452-462.	1.7	38
164	Effects of CO2 enrichment, nutrient addition, and fungal endophyte-infection on the growth of two grasses. Oecologia, 1990, 84, 207-214.	2.0	71
165	Fungal Endophytes of Grasses. Annual Review of Ecology, Evolution, and Systematics, 1990, 21, 275-297.	6.7	507
166	Ergobalansine, a New Ergot-Type Peptide Alkaloid Isolated from Cenchrus echinatus (Sandbur Grass) Infected with Balansia obtecta, and Produced in Liquid Cultures of B. obtecta and Balansia cyperi. Journal of Natural Products, 1990, 53, 1272-1279.	3.0	44
167	Infection of Woodland Grasses by Fungal Endophytes. Mycologia, 1989, 81, 805-811.	1.9	83
168	Morphological, Cultural and Mating Studies on Atkinsonella, Including A. Texensis. Mycologia, 1989, 81, 692-701.	1.9	22
169	QUANTITATIVE VARIATION IN PHLOX: COMPARISON OF SELFING AND OUTCROSSING SPECIES. American Journal of Botany, 1989, 76, 577-588.	1.7	22
170	Morphological, Cultural and Mating Studies on Atkinsonella, including A. texensis. Mycologia, 1989, 81, 692.	1.9	26
171	Infection of Woodland Grasses by Fungal Endophytes. Mycologia, 1989, 81, 805.	1.9	72
172	Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera) Tj ETQq0 0 0 rg	$BT_{1.8}^{/Qverlo}$	ock 10 Tf 50 3 104
173	Impact of the fungus Balansia henningsiana on Panicum agrostoides: frequency of infection, plant growth and reproduction, and resistance to pests. Oecologia, 1989, 80, 374-380.	2.0	61
174	Clavicipitaceous endophytes of grasses: Their potential as biocontrol agents. Mycological Research, 1989, 92, 1-12.	2.5	191
175	Isozyme variation in the fungus <i>Atkinsonella hypoxylon</i> within and among populations of its host grasses. Canadian Journal of Botany, 1989, 67, 2600-2607.	1.1	41
176	EXPERIMENTAL EVIDENCE FOR GENETIC VARIATION IN COMPATIBILITY BETWEEN THE FUNGUS <i>ATKINSONELLA HYPOXYLON</i> AND ITS THREE HOST GRASSES. Evolution; International Journal of Organic Evolution, 1989, 43, 825-834.	2.3	28
177	The effect of the fungus, Balansia cyperi Edg., on growth and reproduction of purple nutsedge, Cyperus rotundus L New Phytologist, 1988, 109, 351-359.	7.3	38

178	Fungal Endophytes of Grasses: A Defensive Mutualism between Plants and Fungi. Ecology, 1988, 69, 10-16.	3.2	675
179	Acquired Chemical Defences in Grasses: The Role of Fungal Endophytes. Oikos, 1988, 52, 309.	2.7	150

Atkinsonella Hypoxylon</i> and <i>Balansia Cyperi</i>, Epiphytic Members of the Balansiae.
1.9 53

#	Article	IF	CITATIONS
181	Experimental Infection of Host Grasses and Sedges withAtkinsonella HypoxylonandBalansia Cyperi(Balansiae, Clavicipitaceae). Mycologia, 1988, 80, 291-297.	1.9	32
182	INTERSPECIFIC COMPETITIVE INTERACTIONS AND THE MAINTENANCE OF GENOTYPIC VARIATION WITHIN TWO PERENNIAL GRASSES. Evolution; International Journal of Organic Evolution, 1987, 41, 92-103.	2.3	72
183	The effect of fungi on the interaction between host plants and their herbivores. Canadian Journal of Plant Pathology, 1987, 9, 380-388.	1.4	33
184	Leaf Age and Related Factors Affecting Endophyte-mediated Resistance to Fall Armyworm (Lepidoptera:) Tj ETQq()	/Qyerlock 1
185	Environment-Dependent Intraspecific Competition in Phlox Drummondii. Ecology, 1986, 67, 37-45.	3.2	22
186	New Disease (Balansia cyperi) of Purple Nutsedge (Cyperus rotundus). Plant Disease, 1986, 70, 597.	1.4	23
187	DEMOGRAPHIC GENETICS OF THE GRASS <i>DANTHONIA SPICATA </i> : SUCCESS OF PROGENY FROM CHASMOGAMOUS AND CLEISTOGAMOUS FLOWERS. Evolution; International Journal of Organic Evolution, 1985, 39, 205-210.	2.3	18
188	QUANTITATIVE VARIATION OF PROGENY FROM CHASMOGAMOUS AND CLEISTOGAMOUS FLOWERS IN THE GRASS <i>DANTHONIA SPICATA</i> . Evolution; International Journal of Organic Evolution, 1985, 39, 335-348.	2.3	31
189	Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia, 1985, 66, 1-5.	2.0	166
190	Extraneous pollen advantage in Phlox cuspidata. Heredity, 1985, 54, 145-148.	2.6	7
191	FUNGAL ENDOPHYTES OF CYPERUS AND THEIR EFFECT ON AN INSECT HERBIVORE. American Journal of Botany, 1985, 72, 1284-1289.	1.7	31
192	EXPERIMENTAL EVIDENCE FOR HOST RACES IN MISTLETOE (PHORADENDRON TOMENTOSUM). American Journal of Botany, 1985, 72, 1225-1231.	1.7	31
193	Fall Armyworm (Lepidoptera: Noctuidae): A Laboratory Bioassay and Larval Preference Study for the Fungal Endophyte of Perennial Ryegrass. Journal of Economic Entomology, 1985, 78, 571-575.	1.8	72
194	Experimental Evidence for Host Races in Mistletoe (Phoradendron tomentosum). American Journal of Botany, 1985, 72, 1225.	1.7	28
195	Fungal Endophytes of Cyperus and their Effect on an Insect Herbivore. American Journal of Botany, 1985, 72, 1284.	1.7	13
196	DYNAMICS OF SYNTHETIC PHLOX DRUMMONDII POPULATIONS AT THE SPECIES MARGIN. American Journal of Botany, 1984, 71, 1040-1050.	1.7	39
197	Transmission of Atkinsonella hypoxylon (Clavicipitaceae) by cleistogamous seed of Danthonia spicata (Gramineae). Canadian Journal of Botany, 1984, 62, 2893-2895.	1.1	27
198	Dynamics of Synthetic Phlox drummondii Populations at the Species Margin. American Journal of Botany, 1984, 71, 1040.	1.7	18

#	Article	IF	CITATIONS
199	The differential establishment of seedlings from chasmogamous and cleistogamous flowers in natural populations of the grass Danthonia spicata (L.) Beauv. Oecologia, 1983, 57, 183-188.	2.0	54
200	VARIATION IN THE DEGREE OF CLEISTOGAMY WITHIN AND AMONG SPECIES OF THE GRASS DANTHONIA. American Journal of Botany, 1983, 70, 835-843.	1.7	33
201	Variation in the Degree of Cleistogamy Within and Among Species of the Grass Danthonia. American Journal of Botany, 1983, 70, 835.	1.7	19
202	ENVIRONMENTAL AND GENETIC DETERMINANTS OF CLEISTOGAMY IN A NATURAL POPULATION OF THE GRASS <i>DANTHONIA SPICATA</i> . Evolution; International Journal of Organic Evolution, 1982, 36, 734-741.	2.3	96
203	An experimental demonstration of density-dependent reproduction in a natural population of Diamorpha smallii, a rare annual. Oecologia, 1981, 51, 1-6.	2.0	35