Robert Younts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289303/publications.pdf

Version: 2024-02-01

516710 36 784 16 citations h-index papers

28 g-index 36 36 36 1645 docs citations times ranked citing authors all docs

501196

#	Article	IF	CITATIONS
1	Fermi liquid theory sheds light on hot electron-hole liquid in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mi>L</mml:mi><mml:mo>â^² mathvariant="normal">S<mml:mn>2</mml:mn></mml:mo></mml:math> . Physical Review B, 2021, 103	√mml:mo 3.2	خmml:m <mark>i></mark>
2	Room-Temperature Electron–Hole Liquid in Monolayer MoS ₂ . ACS Nano, 2019, 13, 10351-10358.	14.6	49
3	Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 38240-38246.	8.0	37
4	Near Bandâ€Edge Optical Excitation Leading to Catastrophic Ionization and Electron–Hole Liquid in Roomâ€Temperature Monolayer MoS 2. Physica Status Solidi (B): Basic Research, 2019, 256, 1900223.	1.5	9
5	The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design. Journal of Physical Chemistry A, 2018, 122, 3764-3771.	2.5	18
6	Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility. Journal of Materials Chemistry A, 2018, 6, 12484-12492.	10.3	43
7	Charge generation dynamics in polymer nonfullerene solar cells with low energy loss. Journal of Photonics for Energy, $2018, 8, 1$.	1.3	4
8	Efficient Generation of Longâ€Lived Triplet Excitons in 2D Hybrid Perovskite. Advanced Materials, 2017, 29, 1604278.	21.0	81
9	Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22170-22179.	10.3	71
10	Impact of highly crystalline, isoindigo-based small-molecular additives for enhancing the performance of all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 21291-21299.	10.3	13
11	Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer. Journal of Physical Chemistry C, 2016, 120, 16437-16445.	3.1	89
12	Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice. Applied Physics Letters, 2016, 109, 213302.	3.3	16
13	Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors. Modern Physics Letters B, 2016, 30, 1630006.	1.9	9
14	Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons. Advanced Energy Materials, 2016, 6, 1301032.	19.5	16
15	Organic Photovoltaics: Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons (Adv. Energy Mater. 1/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
16	Controlling Energy Levels and Blend Morphology for All-Polymer Solar Cells via Fluorination of a Naphthalene Diimide-Based Copolymer Acceptor. Macromolecules, 2016, 49, 6374-6383.	4.8	66
17	Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells. Materials Chemistry and Physics, 2016, 184, 57-63.	4.0	10
18	Charge Generation Dynamics in Efficient All-Polymer Solar Cells: Influence of Polymer Packing and Morphology. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27586-27591.	8.0	22

#	Article	IF	CITATIONS
19	A femtosecond study of the anomaly in electron injection for dye-sensitized solar cells: the influence of isomerization employing Ru(<scp>ii</scp>) sensitizers with anthracene and phenanthrene ancillary ligands. Physical Chemistry Chemical Physics, 2015, 17, 2750-2756.	2.8	13
20	More stable and more efficient alternatives of Z-907: carbazole-based amphiphilic Ru(<scp>ii</scp>) sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 27078-27087.	2.8	41
21	Influence of mono versus bis-electron-donor ancillary ligands in heteroleptic Ru(<scp>ii</scp>) bipyridyl complexes on electron injection from the first excited singlet and triplet states in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14228-14235.	10.3	30
22	Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems. Journal of Chemical Physics, 2014, 140, 064301.	3.0	6
23	Effects of spatial dispersion on the Casimir force between graphene sheets. European Physical Journal B, 2012, 85, 1.	1.5	30
24	Surface plasmon amplification under controlled excitonâ€plasmon coupling in individual carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1259-1264.	0.8	8
25	On the role of interband surface plasmons in carbon nanotubes. Optics and Spectroscopy (English) Tj ETQq1 1 0.	784314 rg 0.6	BT /Overloc
26	Chirality dependent carbon nanotube interactions. Physical Review B, 2011, 83, .	3.2	17
27	Electrostatic field control of exciton–plasmon coupling and optical response of individual carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 468-471.	1.5	3
28	Surface exciton-plasmons and optical response of small-diameter carbon nanotubes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 376-384.	0.6	2
29	Zero-point energy of a cylindrical layer of finite thickness. Physical Review A, 2008, 78, .	2.5	5
30	QUBIT ENTANGLEMENT FROM A BIPARTITE ATOMIC SYSTEM UNDER STRONG ATOM-VACUUM-FIELD COUPLING IN A CARBON NANOTUBE. , 2007, , .		0
31	Temperature-activated transition of positronium from self-trapped to delocalized state in <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Ca</mml:mi><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow>.</mmi:math>	3.2	9
32	Tunnel detrapping of self-trapped positronium in SrF2single crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3867-3870.	0.8	1
33	Quantum optics phenomena in atomically doped carbon nanotubes. Optics and Spectroscopy (English) Tj ETQq1	1 _{0.7} 8431	.4 ₂ rgBT/Ov
34	Nonpolar optical scattering of positronium in magnesium fluoride. Physical Review B, 2005, 72, .	3.2	7
35	Exciton-phonon interactions and exciton dephasing in semiconductor quantum-well heterostructures. Physical Review B, 2003, 68, .	3.2	27
36	Positronium in alkali halides: Tunneling from the delocalized to the self-trapped state. Physical Review B, 1998, 57, 11341-11348.	3.2	18

3