
Michael J Holdsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway. Current Biology, 2022, 32, 1403-1411.e4.	3.9	23
2	Allelic shift in cis-elements of the transcription factor <i>RAP2.12</i> underlies adaptation associated with humidity in <i>Arabidopsis thaliana</i> . Science Advances, 2022, 8, eabn8281.	10.3	15
3	An oxygen-sensing mechanism for angiosperm adaptation to altitude. Nature, 2022, 606, 565-569.	27.8	31
4	The PRT6 Nâ€degron pathway restricts VERNALIZATION 2 to endogenous hypoxic niches to modulate plant development. New Phytologist, 2021, 229, 126-139.	7.3	26
5	A Yeast-Based Functional Assay to Study Plant N-Degron – N-Recognin Interactions. Frontiers in Plant Science, 2021, 12, 806129.	3.6	2
6	The plant Nâ€degron pathways of ubiquitinâ€mediated proteolysis. Journal of Integrative Plant Biology, 2020, 62, 70-89.	8.5	51
7	Every Breath You Take: New Insights into Plant and Animal Oxygen Sensing. Cell, 2020, 180, 22-24.	28.9	78
8	Plant proteostasis – shaping the proteome: a research community aiming to understand molecular mechanisms that control protein abundance. New Phytologist, 2020, 227, 1028-1033.	7.3	7
9	Comparative Biology of Oxygen Sensing in Plants andÂAnimals. Current Biology, 2020, 30, R362-R369.	3.9	43
10	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	7.3	59
11	Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications, 2019, 10, 4020.	12.8	195
12	The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annual Review of Plant Biology, 2019, 70, 119-151.	18.7	158
13	The Arabidopsis thaliana Nâ€recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct, 2019, 3, e00194.	1.9	12
14	A Regulatory Module Controlling GA-Mediated Endosperm Cell Expansion Is Critical for Seed Germination in Arabidopsis. Molecular Plant, 2019, 12, 71-85.	8.3	69
15	N-term 2017: Proteostasis via the N-terminus. Trends in Biochemical Sciences, 2019, 44, 293-295.	7.5	1
16	Finite indentation of highly curved elastic shells. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170482.	2.1	5
17	Nâ€ŧerminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/Nâ€end rule pathway. New Phytologist, 2018, 218, 1106-1126.	7.3	44
18	Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATIONÂ2. Nature Communications, 2018, 9, 5438.	12.8	81

MICHAEL J HOLDSWORTH

#	Article	IF	CITATIONS
19	Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment. Scientific Reports, 2018, 8, 15192.	3.3	20
20	Sumoylation and phosphorylation: hidden and overt links. Journal of Experimental Botany, 2018, 69, 4583-4590.	4.8	24
21	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	7.3	146
22	First hints of new sensors. Nature Plants, 2017, 3, 767-768.	9.3	10
23	The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Current Biology, 2017, 27, 3183-3190.e4.	3.9	118
24	Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State. Frontiers in Plant Science, 2016, 7, 1323.	3.6	30
25	From start to finish: aminoâ€ŧerminal protein modifications as degradation signals in plants. New Phytologist, 2016, 211, 1188-1194.	7.3	53
26	Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot. BMC Plant Biology, 2016, 16, 251.	3.6	71
27	The wheatPhs-A1pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to thePM19genes in UK germplasm. Journal of Experimental Botany, 2016, 67, 4169-4178.	4.8	53
28	Enhanced waterlogging tolerance in barley by manipulation of expression of the Nâ€end rule pathway E3 ligase <i><scp>PROTEOLYSIS</scp>6</i> . Plant Biotechnology Journal, 2016, 14, 40-50.	8.3	122
29	Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 2015, 3, 10.	3.7	30
30	Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 2015, 25, 1483-1488.	3.9	131
31	Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. Plant Physiology, 2015, 169, 23-31.	4.8	156
32	Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the <i>Arabidopsis</i> embryo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8685-8690.	7.1	172
33	Promotion of Testa Rupture during Garden Cress Germination Involves Seed Compartment-Specific Expression and Activity of Pectin Methylesterases Â. Plant Physiology, 2014, 167, 200-215.	4.8	64
34	Barley has two peroxisomal ABC transporters with multiple functions in \hat{I}^2 -oxidation. Journal of Experimental Botany, 2014, 65, 4833-4847.	4.8	26
35	Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 2014, 53, 369-379.	9.7	312
36	Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. Plant Physiology, 2014, 166, 1022-1032.	4.8	124

#	Article	IF	CITATIONS
37	The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends in Cell Biology, 2014, 24, 603-611.	7.9	171
38	Transcriptional Dynamics of Two Seed Compartments with Opposing Roles in Arabidopsis Seed Germination Â. Plant Physiology, 2013, 163, 205-215.	4.8	175
39	<i>Arabidopsis</i> PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. Plant Cell, 2012, 24, 2483-2496.	6.6	493
40	Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7571-7576.	7.1	119
41	Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17, 129-138.	8.8	465
42	Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9709-9714.	7.1	210
43	Axisymmetric indentation of curved elastic membranes by a convex rigid indenter. International Journal of Non-Linear Mechanics, 2011, 46, 1128-1138.	2.6	30
44	Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 2011, 479, 415-418.	27.8	576
45	SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 384-398.	4.8	163
46	Functional Network Construction in <i>Arabidopsis</i> Using Rule-Based Machine Learning on Large-Scale Data Sets Â. Plant Cell, 2011, 23, 3101-3116.	6.6	91
47	A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO Journal, 2011, 30, 4171-4184.	7.8	161
48	Seed Bioinformatics. Methods in Molecular Biology, 2011, 773, 403-419.	0.9	1
49	Statistical evaluation of transcriptomic data generated using the Affymetrix one-cycle, two-cycle and IVT-Express RNA labelling protocols with the Arabidopsis ATH1 microarray. Plant Methods, 2010, 6, 9.	4.3	11
50	An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. Journal of Experimental Botany, 2010, 61, 597-607.	4.8	75
51	The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4549-4554.	7.1	172
52	The NBDs that wouldn't die. Communicative and Integrative Biology, 2009, 2, 97-99.	1.4	8
53	Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series. Molecular Biology of the Cell, 2009, 20, 530-543.	2.1	43
54	Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 2009, 114, 329-342.	5.1	316

MICHAEL J HOLDSWORTH

#	Article	IF	CITATIONS
55	The NBDs that wouldn't die: A cautionary tale of the use of isolated nucleotide binding domains of ABC transporters. Communicative and Integrative Biology, 2009, 2, 97-9.	1.4	6
56	Seed afterâ€ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal, 2008, 53, 214-224.	5.7	166
57	Molecular networks regulating Arabidopsis seed maturation, afterâ€ripening, dormancy and germination. New Phytologist, 2008, 179, 33-54.	7.3	794
58	Post-genomics dissection of seed dormancy and germination. Trends in Plant Science, 2008, 13, 7-13.	8.8	205
59	Gene Expression Profiling Reveals Defined Functions of the ATP-Binding Cassette Transporter COMATOSE Late in Phase II of Germination. Plant Physiology, 2007, 143, 1669-1679.	4.8	90
60	The COMATOSE ATP-Binding Cassette Transporter Is Required for Full Fertility in Arabidopsis. Plant Physiology, 2007, 144, 1467-1480.	4.8	85
61	Nicotinamidase activity is important for germination. Plant Journal, 2007, 51, 341-351.	5.7	106
62	Peroxisomal ABC transporters. FEBS Letters, 2006, 580, 1139-1155.	2.8	103
63	Chewing the fat: Î ² -oxidation in signalling and development. Trends in Plant Science, 2006, 11, 124-132.	8.8	237
64	Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnology Journal, 2006, 4, 369-380.	8.3	146
65	Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2805-2814.	4.8	60
66	Conserved Mechanisms of Dormancy and Germination as Targets for Manipulation of Agricultural Problems. , 2006, , 11-32.		2
67	Transcripts of Vp-1 homoeologues are alternatively spliced within the Triticeae tribe. Euphytica, 2005, 143, 243-246.	1.2	32
68	Jasmonic Acid Levels Are Reduced in COMATOSE ATP-Binding Cassette Transporter Mutants. Implications for Transport of Jasmonate Precursors into Peroxisomes. Plant Physiology, 2005, 137, 835-840.	4.8	248
69	Geminiviruses and RNA silencing. Trends in Plant Science, 2005, 10, 144-151.	8.8	153
70	A transcriptomics resource for wheat functional genomics. Plant Biotechnology Journal, 2004, 2, 495-506.	8.3	60
71	Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10203-10208.	7.1	143
72	Amplification and Detection of Transposon Insertion Flanking Sequences Using Fluorescent <i>Mu</i> AFLP. BioTechniques, 2002, 32, 1090-1097.	1.8	19

Michael J Holdsworth

#	Article	IF	CITATIONS
73	REGIA, An EU Project on Functional Genomics of Transcription Factors fromArabidopsis thaliana. Comparative and Functional Genomics, 2002, 3, 102-108.	2.0	69
74	Use of comparative molecular genetics to study pre harvest sprouting in wheat. Euphytica, 2002, 126, 27-33.	1.2	16
75	Mapping genes for resistance to sprouting damage in wheat. Euphytica, 2002, 126, 39-45.	1.2	149
76	Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO Journal, 2002, 21, 2912-2922.	7.8	280
77	Identification of Transposon-Tagged Maize Genes Displaying Homology to Arrayed cDNA Clones with the Use of Mutator Insertion Display. Journal of Genome Science and Technology, 2002, 1, 48-55.	0.5	3
78	Genetic control mechanisms regulating the initiation of germination. Journal of Plant Physiology, 2001, 158, 439-445.	3.5	17
79	Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1. Plant Journal, 2000, 21, 133-142.	5.7	46
80	Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant Journal, 2000, 21, 143-155.	5.7	210
81	ABI3 emerges from the seed. Trends in Plant Science, 2000, 5, 418-419.	8.8	91
82	Genetic map locations for orthologous Vp1 genes in wheat and rice. Theoretical and Applied Genetics, 1999, 98, 281-284.	3.6	129
83	Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends in Plant Science, 1999, 4, 275-280.	8.8	107
84	The Wheat Transcriptional Activator SPA: A Seed-Specific bZIP Protein That Recognizes the GCN4-Like Motif in the Bifactorial Endosperm Box of Prolamin Genes. Plant Cell, 1997, 9, 171.	6.6	47
85	Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of Avena fatua. Plant Journal, 1997, 12, 911-920.	5.7	93
86	The maize transcription factor Opaque-2 activates a wheat glutenin promoter in plant and yeast cells. Plant Molecular Biology, 1995, 29, 711-720.	3.9	36
87	Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant Journal, 1994, 5, 815-826.	5.7	176
88	Transcriptional control of plant storage protein genes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 342, 209-215.	4.0	33
89	DNA-binding properties of cloned TATA-binding protein from potato tubers. Plant Molecular Biology, 1992, 19, 455-464.	3.9	27
90	Identification of a wound-induced inhibitor of a nuclear factor that binds the carrot extensin gene. Planta, 1989, 180, 74-81.	3.2	12

#	Article	IF	CITATIONS
91	Site-specific binding of a nuclear factor to the carrot extensin gene is influenced by both ethylene and wounding. Planta, 1989, 179, 17-23.	3.2	47
92	Organisation and expression of a wound/ripening-related small multigene family from tomato. Plant Molecular Biology, 1988, 11, 81-88.	3.9	69
93	Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Research, 1987, 15, 731-739.	14.5	169
94	Nucleotide sequence of an ethylene-related gene from tomato. Nucleic Acids Research, 1987, 15, 10600-10600.	14.5	43