Sebastian Höss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289092/publications.pdf

Version: 2024-02-01

186265 214800 2,327 64 28 47 citations h-index g-index papers 65 65 65 2259 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms $\hat{a} \in \mathbb{Z}$ a review $\hat{a} \in \mathbb{Z}$. Chemosphere, 1998, 37, 1335-1362.	8.2	255
2	Glyphosate, a chelating agentâ€"relevant for ecological risk assessment?. Environmental Science and Pollution Research, 2018, 25, 5298-5317.	5.3	139
3	ECOTOXICOLOGICAL ASSESSMENT OF AQUATIC SEDIMENTS WITH CAENORHABDITIS ELEGANS (NEMATODA)—A METHOD FOR TESTING LIQUID MEDIUM AND WHOLE-SEDIMENT SAMPLES. Environmental Toxicology and Chemistry, 1997, 16, 245.	4.3	119
4	Nematode species at risk — A metric to assess pollution in soft sediments of freshwaters. Environment International, 2011, 37, 940-949.	10.0	91
5	Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicology and Environmental Safety, 2009, 72, 1811-1818.	6.0	79
6	Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination – Determination of toxicity thresholds. Environmental Pollution, 2010, 158, 2999-3010.	7.5	77
7	Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicology and Environmental Safety, 2011, 74, 123-131.	6.0	75
8	Nematode communities in contaminated river sediments. Environmental Pollution, 2007, 146, 64-76.	7.5	73
9	Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology, 2007, 16, 15-28.	2.4	72
10	Refractory dissolved organic matter can influence the reproduction of Caenorhabditis elegans (Nematoda). Freshwater Biology, 2001, 46, 1-10.	2.4	71
11	Gene expression profiling to characterize sediment toxicity $\hat{a} \in \hat{a}$ a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics, 2009, 10, 160.	2.8	68
12	Relationship between concentration of dissolved organic matter (DOM) and the effect of DOM on the bioconcentration of benzo[a]pyrene. Aquatic Toxicology, 1999, 45, 147-158.	4.0	66
13	Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquatic Toxicology, 2010, 99, 126-137.	4.0	59
14	Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundamental and Applied Limnology, 2012, 180, 233-248.	0.7	57
15	Toxicity of cadmium to <i>Caenorhabditis elegans</i> (Nematoda) in whole sediment and pore waterâ€"the ambiguous role of organic matter. Environmental Toxicology and Chemistry, 2001, 20, 2794-2801.	4.3	56
16	Effects of transgenic corn and Cry1Ab protein on the nematode, Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2008, 70, 334-340.	6.0	54
17	Interlaboratory comparison of a standardized toxicity test using the nematode <i>Caenorhabditis elegans</i> (ISO 10872). Environmental Toxicology and Chemistry, 2012, 31, 1525-1535.	4.3	51
18	Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environmental Toxicology and Chemistry, 2013, 32, 144-155.	4.3	50

#	Article	IF	Citations
19	Toxicity of Ingested Cadmium to the Nematode Caenorhabditis elegans. Environmental Science & Emp; Technology, 2011, 45, 10219-10225.	10.0	48
20	Assessing the impact of chemical pollution on benthic invertebrates from three different European rivers using a weight-of-evidence approach. Science of the Total Environment, 2012, 438, 498-509.	8.0	43
21	Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion. Ecological Indicators, 2020, 118, 106698.	6.3	40
22	Enhanced growth and reproduction of Caenorhabditis elegans (Nematoda) in the presence of 4-Nonylphenol. Environmental Pollution, 2002, 120, 169-172.	7.5	39
23	Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein. Science of the Total Environment, 2011, 409, 2674-2684.	8.0	39
24	Bioavailability and toxicity of pyrene in soils upon biochar and compost addition. Science of the Total Environment, 2017, 595, 132-140.	8.0	39
25	Size- and Composition-Dependent Toxicity of Synthetic and Soil-Derived Fe Oxide Colloids for the Nematode <i>Caenorhabditis elegans</i> Invironmental Science & Decided Fe Oxide Colloids for the Nematode	10.0	36
26	INFLUENCE OF 4-NONYLPHENOL ON THE STRUCTURE OF NEMATODE COMMUNITIES IN FRESHWATER MICROCOSMS. Environmental Toxicology and Chemistry, 2004, 23, 1268.	4.3	35
27	Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium. Environmental Toxicology and Chemistry, 2011, 30, 427-438.	4.3	33
28	Measurement of movement patterns of Caenorhabditis elegans (Nematoda) with the Multispecies Freshwater BiomonitorÂ $^{\circ}$ (MFB)â $^{\circ}$ " a potential new method to study a behavioral toxicity parameter of nematodes in sediments. Environmental Pollution, 2002, 120, 513-516.	7.5	32
29	Passive Dosing in Chronic Toxicity Tests with the Nematode <i>Caenorhabditis elegans</i> Environmental Science & Dosing in Chronic Toxicity Tests with the Nematode <i>Caenorhabditis elegans</i>	10.0	29
30	Hormonelike effects of humic substances on fish, amphibians, and invertebrates. Environmental Toxicology, 2004, 19, 409-411.	4.0	28
31	Validating the NemaSPEAR[%]-index for assessing sediment quality regarding chemical-induced effects on benthic communities in rivers. Ecological Indicators, 2017, 73, 52-60.	6.3	27
32	Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environment International, 2020, 143, 105922.	10.0	25
33	Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt) Tj ETQq1 1 0.784	1314 rgBT 7.5	10verlock
34	Is Caenorhabditis elegans representative of freshwater nematode species in toxicity testing?. Environmental Science and Pollution Research, 2018, 25, 2879-2888.	5.3	21
35	Linking ecological health to co-occurring organic and inorganic chemical stressors in a groundwater-fed stream system. Science of the Total Environment, 2018, 642, 1153-1162.	8.0	21
36	Limited effects of pesticides on stream macroinvertebrates, biofilm nematodes, and algae in intensive agricultural landscapes in Sweden. Water Research, 2020, 174, 115640.	11.3	20

#	Article	IF	CITATIONS
37	Small-scale microcosms to detect chemical induced changes in soil nematode communities — Effects of crystal proteins and Bt-maize plant material. Science of the Total Environment, 2014, 472, 662-671.	8.0	19
38	Further Evidence that Humic Substances Have the Potential to Modulate the Reproduction of the Nematode Caenorhabditis elegans. International Review of Hydrobiology, 2002, 87, 121.	0.9	18
39	A comparative approach using ecotoxicological methods from singleâ€species bioassays to model ecosystems. Environmental Toxicology and Chemistry, 2016, 35, 2987-2997.	4.3	18
40	Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms. Environmental Pollution, 2006, 144, 661-668.	7. 5	17
41	Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates. Environmental Pollution, 2008, 153, 184-191.	7.5	17
42	Response of nematode communities to metals and PAHs in freshwater microcosms. Ecotoxicology and Environmental Safety, 2018, 148, 244-253.	6.0	17
43	Oxygen consumption rate of Caenorhabditis elegans as a high-throughput endpoint of toxicity testing using the Seahorse XFe96 Extracellular Flux Analyzer. Scientific Reports, 2020, 10, 4239.	3.3	13
44	The use of meiofauna in freshwater sediment assessments: Structural and functional responses of meiobenthic communities to metal and organics contamination. Ecological Indicators, 2017, 78, 512-525.	6.3	12
45	Comparing the effects of fludioxonil on non-target soil invertebrates using ecotoxicological methods from single-species bioassays to model ecosystems. Ecotoxicology and Environmental Safety, 2019, 183, 109596.	6.0	11
46	Organic carbon source in formulated sediments influences life traits and gene expression of Caenorhabditis elegans. Ecotoxicology, 2012, 21, 557-568.	2.4	10
47	Soil organisms as an essential element of a monitoring plan to identify the effects of GMO cultivation. Requirements $\hat{a} \in \text{``Methodology } \hat{a} \in \text{``Standardisation. BioRisk, 0, 8, 73-87.}$	0.2	9
48	Risk assessment of the cultivation of a stacked Bt-maize variety (MON89034Â×ÂMON88017) for nematode communities. Soil Biology and Biochemistry, 2015, 91, 109-118.	8.8	8
49	Effects of waste materials on Caenorhabditis elegans (Nematoda) using the ISO standard soil toxicity test. Environmental Science and Pollution Research, 2019, 26, 26304-26312.	5.3	7
50	Response of a nematode community to the fungicide fludioxonil in sediments of outdoor freshwater microcosms compared to a single species toxicity test. Science of the Total Environment, 2020, 710, 135627.	8.0	7
51	Added value of the NemaSPEAR[%]-index to routinely used macrofauna-based indices for assessing the quality of freshwater sediments. Ecological Indicators, 2021, 121, 107015.	6.3	7
52	Food bacteria and synthetic microparticles of similar size influence pharyngeal pumping of Caenorhabditis elegans. Aquatic Toxicology, 2021, 235, 105827.	4.0	7
53	On the balance between practical relevance and standardization - Testing the effects of zinc and pyrene on native nematode communities in soil microcosms. Science of the Total Environment, 2021, 788, 147742.	8.0	7
54	Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. Environmental Toxicology and Chemistry, 2015, 34, 2660-2669.	4.3	6

#	Article	IF	CITATIONS
55	Tolerance of freeâ€living nematode species to imidacloprid and diuron. Invertebrate Biology, 2019, 138, e12272.	0.9	6
56	Chapter 15 Nematodes. Trace Metals and Other Contaminants in the Environment, 2003, 6, 529-554.	0.1	5
57	EFFECTS OF QUANTITY, QUALITY, AND CONTACT TIME OF DISSOLVED ORGANIC MATTER ON BIOCONCENTRATION OF BENZO[a]PYRENE IN THE NEMATODE CAENORHABDITIS ELEGANS. Environmental Toxicology and Chemistry, 1999, 18, 459.	4.3	4
58	Dataset supporting the use of nematodes as bioindicators of polluted sediments. Data in Brief, 2020, 32, 106087.	1.0	3
59	Free-living nematode communities in a large and deep oligotrophic lake in Europe: comparison of different depth zones of Lake Constance (Germany). Nematology, 2020, 23, 69-87.	0.6	3
60	Reply to the letter to the editor by Swarthout et al. (2018): Comments for Mertens et al. (2018), Glyphosate, a chelating agent—relevant for ecological risk assessment?. Environmental Science and Pollution Research, 2018, 25, 27664-27666.	5.3	2
61	Nematode Community of a Natural Grassland Responds Sensitively to the Broadâ€Spectrum Fungicide Mancozeb in Soil Microcosms. Environmental Toxicology and Chemistry, 2022, 41, 2420-2430.	4.3	2
62	Biochemical and Biological Characterization: Effects of Dissolved Organic Matter on the Bioconcentration of Organic Contaminants and on Reproduction in Aquatic Invertebrates. , 0, , 361-381.		1
63	Influence of Particle Size Distribution and Content of Organic Matter on the Toxicity of Copper in Sediment Bioassays Using Caenorhabditis Elegans (Nematoda). Water, Air, and Soil Pollution, 1997, 99, 689-695.	2.4	0
64	Laudation to PD Dr. Wolfgang Ahlf: towards integrated approaches in sediment toxicology and its transfer to sediment quality guidelines. Environmental Sciences Europe, 2015, 27, .	5. 5	0