
Gary Kohanbash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel EGFRvIII-CAR transgenic mice for rigorous preclinical studies in syngeneic mice. Neuro-Oncology, 2022, 24, 259-272.	1.2	6
2	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	13.2	16
3	Handheld PET Probe for Pediatric Cancer Surgery. Cancers, 2022, 14, 2221.	3.7	3
4	Quantitative Sodium (23Na) MRI in Pediatric Gliomas: Initial Experience. Diagnostics, 2022, 12, 1223.	2.6	2
5	Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Theranostics, 2021, 11, 1295-1309.	10.0	24
6	Oncolytic HSV Vectors and Anti-Tumor Immunity. Current Issues in Molecular Biology, 2021, 41, 381-468.	2.4	8
7	TIGIT and PD-1 Immune Checkpoint Pathways Are Associated With Patient Outcome and Anti-Tumor Immunity in Glioblastoma. Frontiers in Immunology, 2021, 12, 637146.	4.8	32
8	Chitinase-3-like 1 protein complexes modulate macrophage-mediated immune suppression in glioblastoma. Journal of Clinical Investigation, 2021, 131, .	8.2	49
9	Treatment of glioblastoma with current oHSV variants reveals differences in efficacy and immune cell recruitment. Molecular Therapy - Oncolytics, 2021, 22, 444-453.	4.4	1
10	Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma. EBioMedicine, 2021, 71, 103571.	6.1	13
11	Preclinical ImmunoPET Imaging of Glioblastoma-Infiltrating Myeloid Cells Using Zirconium-89 Labeled Anti-CD11b Antibody. Molecular Imaging and Biology, 2020, 22, 685-694.	2.6	32
12	Blockade of Cell Volume Regulatory Protein NKCC1 Increases TMZ-Induced Glioma Apoptosis and Reduces Astrogliosis. Molecular Cancer Therapeutics, 2020, 19, 1550-1561.	4.1	22
13	Abstract 6346: Optimizing precision combination therapies based on single-cell profiling of brain tumor biopsies. , 2020, , .		0
14	Abstract 4443: Inhibition of PGE2/EP4 pathway by ONO-4578/BMS-986310, a novel EP4 antagonist, promotes T cell activation and myeloid cell differentiation to dendritic cells. Cancer Research, 2020, 80, 4443-4443.	0.9	2
15	EPCO-32. AN EPIGENETIC SINGLE-CELL ATLAS OF IDH-MUTANT GLIOMA REVEALS THE ROLE OF ATRX IN SHAPING TUMOR COMPOSITION. Neuro-Oncology, 2020, 22, ii76-ii76.	1.2	0
16	EPCO-17. A SINGLE-CELL ATLAS OF GLIOBLASTOMA EVOLUTION UNDER THERAPY. Neuro-Oncology, 2020, 22, ii72-ii73.	1.2	0
17	Immunopeptidomics and Peptide Expression Profiles to Develop T-Cell Receptors Against Glioma-Associated Antigens. Neurosurgery, 2019, 66, .	1.1	0
18	The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single Axis of Variation. Cancer Discovery, 2019, 9, 1708-1719.	9.4	205

#	Article	IF	CITATIONS
19	Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas. Cancer Research, 2019, 79, 4026-4041.	0.9	16
20	DIPG-11. ACTIVATION OF RAS SIGNALING AND DISTINCT MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs) PROVIDES UNIQUE THERAPEUTIC VULNERABILITIES IN MUTANT HISTONE DIPG. Neuro-Oncology, 2019, 21, ii70-ii70.	1.2	0
21	IMMU-16. GUADECITABINE (SGI-110) IMMUNOSENSITIZES MURINE C57BL/6-SYNGENEIC GLIOMA AND DIPG MODELS. Neuro-Oncology, 2019, 21, ii96-ii96.	1.2	0
22	TMIC-19. H+ EXTRUSION PROTEIN NA/H EXCHANGER IN METABOLIC POLARIZATION OF GLIOMA-ASSOCIATED MICROGLIA/MACROPHAGES AND TUMOR IMMUNITY. Neuro-Oncology, 2019, 21, vi251-vi251.	1.2	0
23	TMIC-39. DEVELOPMENT OF CD11b TRACER FOR THE IMMUNE PET IMAGING IN GLIOBLASTOMA MODEL - COULD BE A GAME CHANGER FOR IMMUNOTHERAPY APPROACHES. Neuro-Oncology, 2019, 21, vi256-vi256.	1.2	0
24	CSIG-01. NA-K-CL COTRANSPORTER PROTEIN IN THE PATHOGENESIS OF LOW-GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi44-vi44.	1.2	0
25	Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. Journal of Experimental Medicine, 2018, 215, 141-157.	8.5	186
26	TMIC-14. AUTO-/PARACRINE SIGNALING OF PI3K/AKT/YKL-40 IN MESENCHYMAL GLIOBLASTOMA PROGRESSION. Neuro-Oncology, 2018, 20, vi258-vi259.	1.2	0
27	IMMU-18. TARGETING THE PD1 AND TIGIT CHECKPOINT PATHWAYS FOR ADULT AND PEDIATRIC GLIOMAS. Neuro-Oncology, 2018, 20, vi125-vi125.	1.2	0
28	TMIC-34. Na/H EXCHANGER ISOFORM 1 (NHE1) IN IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT IN MOUSE SYNGENEIC GLIOMA MODEL. Neuro-Oncology, 2018, 20, vi263-vi263.	1.2	0
29	IMMU-16. GUADECITABINE (SGI-110) ENHANCES MHC class I AND TUMOR ANTIGEN EXPRESSION ON MURINE C57BL/6-SYNGENEIC GLIOMA AND DIPG MODELS. Neuro-Oncology, 2018, 20, vi124-vi124.	1.2	0
30	IMMU-17. PEPTIDE VACCINE IMMUNOTHERAPY BIOMARKERS AND RESPONSE PATTERNS IN PEDIATRIC GLIOMAS. Neuro-Oncology, 2018, 20, vi124-vi125.	1.2	0
31	Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death and Disease, 2018, 9, 1010.	6.3	47
32	Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. Journal of Experimental and Clinical Cancer Research, 2018, 37, 255.	8.6	45
33	Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas. JCl Insight, 2018, 3, .	5.0	21
34	Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Oncogene, 2017, 36, 3749-3759.	5.9	104
35	Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biology, 2017, 18, 234.	8.8	448
36	IMMU-41. H3.3K27M MUTATION-DERIVED NOVEL NEOANTIGEN – CHARACTERIZATION OF THE HLA-A2-BINDIN EPITOPE AND AÂSPECIFIC T CELL RECEPTOR FOR DEVELOPMENT OF T CELL-BASED IMMUNOTHERAPY. Neuro-Oncology, 2017, 19, vi121-vi121.	G 1.2	0

Gary Kohanbash

#	Article	IF	CITATIONS
37	IMMU-52. SELECTION OF GLIOMA T-CELL THERAPY TARGETS BASED ON THE ANALYSIS OF TUMOR IMMUNOPEPTIDOME AND EXPRESSION PROFILES. Neuro-Oncology, 2017, 19, vi124-vi124.	1.2	0
38	IMMU-42. ONO-AE3-208 PROMOTES ANTI-TUMOR IMMUNE ACTIVITY AND SURVIVAL IN GLIOMA MODELS. Neuro-Oncology, 2017, 19, vi122-vi122.	1.2	0
39	Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. Journal of Clinical Investigation, 2017, 127, 1425-1437.	8.2	334
40	TMIC-11. TUMOR GENETICS AND MACROPHAGE ONTOGENY SHAPE THE INNATE IMMUNE RESPONSE TO GLIOMA. Neuro-Oncology, 2017, 19, vi245-vi245.	1.2	0
41	HG-81NOVEL AND SHARED NEOANTIGEN FOR GLIOMA T CELL THERAPY DERIVED FROM HISTONE 3 VARIANT H3.3 K27M MUTATION. Neuro-Oncology, 2016, 18, iii67.1-iii67.	1.2	1
42	IMST-09. IDENTIFICATION OF AÂNOVEL H3.3.K27M MUTATION-DERIVED NEOANTIGEN EPITOPE AND CLONING OF AÂSPECIFIC T-CELL RECEPTOR FOR T-CELL THERAPY IN GLIOMAS. Neuro-Oncology, 2016, 18, vi87-vi87.	F 1.2	0
43	IMST-14. IDH1 R132H MUTATION INHIBITS ANTI-GLIOMA IMMUNE RESPONSES THROUGH POST-TRANSCRIPTIONAL DOWN-REGULATION OF STAT1 AND TYPE-1 CHEMOKINES. Neuro-Oncology, 2016, 18, vi88-vi88.	1.2	0
44	Singleâ€cell sequencing maps gene expression to mutational phylogenies in <scp>PDGF</scp> ―and <scp>EGF</scp> â€driven gliomas. Molecular Systems Biology, 2016, 12, 889.	7.2	91
45	IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro-Oncology, 2016, 18, 1402-1412.	1.2	126
46	Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine. Scientific Reports, 2016, 6, 31397.	3.3	24
47	Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice. Human Gene Therapy Clinical Development, 2016, 27, 145-151.	3.1	9
48	Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. Journal of Neuro-Oncology, 2016, 130, 543-552.	2.9	90
49	IMST-04. IMAGING INFLAMMATORY CELL FUNCTION USING 13C MAGNETIC RESONANCE SPECTROSCOPY OF HYPERPOLARIZED 6-13C-LABELED ARGININE. Neuro-Oncology, 2016, 18, vi86-vi86.	1.2	0
50	Prioritization schema for immunotherapy clinical trials in glioblastoma. Oncolmmunology, 2016, 5, e1145332.	4.6	13
51	IMPS-11EXPRESSION AND PROGNOSTIC IMPACT OF IMMUNE MODULATORY MOLECULE PD-L1 IN MENINGIOMA. Neuro-Oncology, 2015, 17, v115.2-v115.	1.2	0
52	MTR-01BEVACIZUMAB-INDUCED MIF DEPLETION: A NOVEL RESISTANCE MECHANISM IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v124.1-v124.	1.2	8
53	GENO-14SINGLE-CELL TRANSCIPTOMICS AND GENOMICS REVEALS A DIVERSITY OF TUMOR AND IMMUNE CELL POLARIZATION SIGNALS IN GBM. Neuro-Oncology, 2015, 17, v94.2-v94.	1.2	0
54	Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity. Biochemical and Biophysical Research Communications, 2015, 458, 549-554.	2.1	26

Gary Kohanbash

#	Article	IF	CITATIONS
55	Induction of Robust Type-I CD8+ T-cell Responses in WHO Grade 2 Low-Grade Glioma Patients Receiving Peptide-Based Vaccines in Combination with Poly-ICLC. Clinical Cancer Research, 2015, 21, 286-294.	7.0	92
56	Histamine deficiency promotes accumulation of immunosuppressive immature myeloid cells and growth of murine gliomas. Oncolmmunology, 2015, 4, e1047581.	4.6	12
57	Abstract 4846: Histamine in myeloid cell maturation and malignant glioma development. , 2014, , .		Ο
58	GM-CSF Promotes the Immunosuppressive Activity of Glioma-Infiltrating Myeloid Cells through Interleukin-4 Receptor-α. Cancer Research, 2013, 73, 6413-6423.	0.9	169
59	Premetastatic soil and prevention of breast cancer brain metastasis. Neuro-Oncology, 2013, 15, 891-903.	1.2	76
60	Differential activity of interferon-α8 promoter is regulated by Oct-1 and a SNP that dictates prognosis of glioma. Oncolmmunology, 2012, 1, 487-492.	4.6	11
61	Myeloid-derived Suppressor Cells (MDSCs) in Gliomas and Glioma-Development. Immunological Investigations, 2012, 41, 658-679.	2.0	56
62	MicroRNAs and STAT interplay. Seminars in Cancer Biology, 2012, 22, 70-75.	9.6	94
63	Abstract 1246: ELK-1 regulates interferon-alpha8 expression via a polymorphic region in the interferon-alpha8 promoter associated with outcome of glioma patients. , 2012, , .		0
64	COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells. Cancer Research, 2011, 71, 2664-2674.	0.9	331
65	Induction of CD8 ⁺ T-Cell Responses Against Novel Glioma–Associated Antigen Peptides and Clinical Activity by Vaccinations With α-Type 1 Polarized Dendritic Cells and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Patients With Recurrent Malignant Glioma. Journal of Clinical Oncology, 2011, 29, 330-336.	1.6	519
66	Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-γ dependent manners. Cancer Immunology, Immunotherapy, 2010, 59, 1401-1409.	4.2	83
67	Role of Type 1 IFNs in Antiglioma Immunosurveillance—Using Mouse Studies to Guide Examination of Novel Prognostic Markers in Humans. Clinical Cancer Research, 2010, 16, 3409-3419.	7.0	80
68	miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy. Journal of Translational Medicine, 2010, 8, 17.	4.4	67
69	MicroRNAs in immune regulation—Opportunities for cancer immunotherapy. International Journal of Biochemistry and Cell Biology, 2010, 42, 1256-1261.	2.8	78
70	Abstract 4786: MiR-17-92 expression in differentiated T cells - Implications for cancer immunotherapy. , 2010, , .		1
71	Abstract 1359: COX2 blockade suppresses glioma-genesis by promoting anti-glioma immunosurveillance. , 2010, , .		0
72	Effective Immunotherapy against Murine Gliomas Using Type 1 Polarizing Dendritic Cells—Significant Roles of CXCL10. Cancer Research, 2009, 69, 1587-1595.	0.9	99

#	Article	IF	CITATIONS
73	Systemic Inhibition of Transforming Growth Factor-Î ² in Glioma-Bearing Mice Improves the Therapeutic Efficacy of Glioma-Associated Antigen Peptide Vaccines. Clinical Cancer Research, 2009, 15, 6551-6559.	7.0	106
74	Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10746-10751.	7.1	161
75	IL-4 Suppresses Very Late Antigen-4 Expression Which is Required for Therapeutic Th1 T-cell Trafficking Into Tumors. Journal of Immunotherapy, 2009, 32, 793-802.	2.4	25
76	Immunotherapeutic Approaches for Glioma. Critical Reviews in Immunology, 2009, 29, 1-42.	0.5	132
77	Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. Journal of Neuro-Oncology, 2008, 88, 245-250.	2.9	77