Diana Boraschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288557/publications.pdf

Version: 2024-02-01

57758 54911 7,686 138 44 84 citations h-index g-index papers 146 146 146 12280 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology, 2014 , 5 , 514 .	4.8	1,499
2	IL-37: a new anti-inflammatory cytokine of the IL-1 family. European Cytokine Network, 2011, 22, 127-147.	2.0	302
3	IL-1 family nomenclature. Nature Immunology, 2010, 11, 973-973.	14.5	294
4	The family of the interleukinâ€1 receptors. Immunological Reviews, 2018, 281, 197-232.	6.0	252
5	Nanoparticles and innate immunity: new perspectives on host defence. Seminars in Immunology, 2017, 34, 33-51.	5.6	244
6	The interleukin-1 receptor family. Seminars in Immunology, 2013, 25, 394-407.	5.6	208
7	IL-18 in autoimmunity: review. European Cytokine Network, 2006, 17, 224-52.	2.0	172
8	Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Particle and Fibre Toxicology, 2011, 8, 8.	6.2	170
9	Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine, 2016, 11, 269-287.	3.3	156
10	The Gracefully Aging Immune System. Science Translational Medicine, 2013, 5, 185ps8.	12.4	124
11	Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Frontiers in Immunology, 2018, 9, 1915.	4.8	121
12	IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14181-14186.	7.1	118
13	Concern-driven integrated approaches to nanomaterial testing and assessment – report of the NanoSafety Cluster Working Group 10. Nanotoxicology, 2014, 8, 334-348.	3.0	118
14	Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. European Cytokine Network, 2004, 15, 339-46.	2.0	113
15	Engineered nanoparticles. How brain friendly is this new guest?. Progress in Neurobiology, 2014, 119-120, 20-38.	5.7	111
16	Role of Metalloproteases in the Release of the IL-1 type II Decoy Receptor. Journal of Biological Chemistry, 1997, 272, 31764-31769.	3.4	108
17	Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacologica Sinica, 2010, 31, 191-201.	6.1	100
18	Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine, 2012, 7, 121-131.	3.3	100

#	Article	lF	Citations
19	The suitability of different cellular (i) in vitro (i) immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology, 2010, 4, 52-72.	3.0	94
20	Circulating levels of IL-1 family cytokines and receptors in Alzheimer's disease: new markers of disease progression?. Journal of Neuroinflammation, 2018, 15, 342.	7.2	91
21	Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents?. Drug Discovery Today, 2012, 17, 367-378.	6.4	87
22	The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmunity Reviews, 2020, 19, 102617.	5.8	87
23	Natural killer activity of gut mucosal lymphoid cells in mice. European Journal of Immunology, 1981, 11, 919-922.	2.9	82
24	Transcriptomic Profiling of the Development of the Inflammatory Response in Human Monocytes In Vitro. PLoS ONE, 2014, 9, e87680.	2.5	81
25	Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology, 2017, 11, 1157-1175.	3.0	80
26	Immunosenescence and vaccine failure in the elderly: Strategies for improving response. Immunology Letters, 2014, 162, 346-353.	2.5	78
27	Innate Immune Memory: Time for Adopting a Correct Terminology. Frontiers in Immunology, 2018, 9, 799.	4.8	77
28	Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2014, 11, 94.	7.2	74
29	Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results. Frontiers in Immunology, 2017, 8, 472.	4.8	72
30	The Membrane Form of the Type II IL-1 Receptor Accounts for Inhibitory Function. Journal of Immunology, 2000, 165, 3350-3357.	0.8	64
31	Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1 \hat{I}^2 /IL-1RIcomplex. FEBS Letters, 2001, 499, 65-68.	2.8	64
32	PLGA nanoparticles surface decorated with the sialic acid, N-acetylneuraminic acid. Biomaterials, 2010, 31, 3395-3403.	11.4	64
33	Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. Antioxidants and Redox Signaling, 2018, 28, 852-872.	5.4	62
34	ILâ€18 Activity in Systemic Lupus Erythematosus. Annals of the New York Academy of Sciences, 2009, 1173, 301-309.	3.8	60
35	Serum and urinary levels of IL-18 and its inhibitor IL-18BP in systemic lupus erythematosus. European Cytokine Network, 2010, 21, 264-71.	2.0	60
36	Macrophage activation for tumor cytotoxicity: Genetic variation in macrophage tumoricidal capacity among mouse strains. Cellular Immunology, 1979, 45, 188-194.	3.0	59

3

#	Article	IF	CITATIONS
37	Differential activity of interleukin $1\hat{l}^{\pm}$ and interleukin $1\hat{l}^2$ in the stimulation of the immune response in vivo. European Journal of Immunology, 1990, 20, 317-321.	2.9	57
38	Chemotactic activity for mononuclear phagocytes of culture supernatants from murine and human tumor cells: Evidence for a role in the regulation of the macrophage content of neoplastic tissues. International Journal of Cancer, 1983, 31, 55-63.	5.1	55
39	Ageing and immunity. Vaccine, 2010, 28, 3627-3631.	3.8	53
40	New Insights Into Tissue Macrophages: From Their Origin to the Development of Memory. Immune Network, 2015, 15, 167.	3.6	53
41	From Antigen Delivery System to Adjuvanticy: The Board Application of Nanoparticles in Vaccinology. Vaccines, 2015, 3, 930-939.	4.4	52
42	Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology, 2015, 9, 462-473.	3.0	52
43	Personalized risk prediction of postoperative cognitive impairment – rationale for the EU-funded BioCog project. European Psychiatry, 2018, 50, 34-39.	0.2	51
44	Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition. Frontiers in Pharmacology, 2017, 8, 335.	3.5	50
45	Free IL-18 and IL-33 cytokines in chronic spontaneous urticaria. Cytokine, 2013, 61, 741-743.	3.2	44
46	Innate Immune Memory: The Latest Frontier of Adjuvanticity. Journal of Immunology Research, 2015, 2015, 1-7.	2.2	44
47	IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Research and Therapy, 2018, 20, 27.	3.5	44
48	Bovine colon organoids: From 3D bioprinting to cryopreserved multi-well screening platforms. Toxicology in Vitro, 2019, 61, 104606.	2.4	44
49	Interferon-induced enhancement of macrophage-mediated tumor cytolysis and its difference from activation by lymphokines. European Journal of Immunology, 1981, 11, 110-114.	2.9	42
50	Macrophage activation by interferon: dissociation between tumoricidal capacity and suppressive activity. European Journal of Immunology, 1982, 12, 320-326.	2.9	42
51	Free circulating interleukin-18 is increased inÂSchnitzler syndrome: aÂnew autoinflammatory disease?. European Cytokine Network, 2009, 20, 108-111.	2.0	40
52	Assessing the Immunosafety of Engineered Nanoparticles with a Novel <i>in Vitro</i> Model Based on Human Primary Monocytes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28437-28447.	8.0	39
53	Specific immune response to HBsAg is enhanced by β-glucan oligosaccharide containing an α-(1→3)-linked bond and biased towards M2/Th2. International Immunopharmacology, 2007, 7, 725-733.	3.8	37
54	Effects of in vivo treatments with cyclosporin-A on mouse cell-mediated immune responses. International Journal of Immunopharmacology, 1981, 3, 357-364.	1.1	36

#	Article	IF	Citations
55	Lymphocytes from Autoimmune MRL <i>lpr/lpr</i> Mice Are Hyperresponsive to IL-18 and Overexpress the IL-18 Receptor Accessory Chain. Journal of Immunology, 2001, 166, 3757-3762.	0.8	36
56	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	10.0	35
57	Immunity against HIV/AIDS, Malaria, and Tuberculosis during Co-Infections with Neglected Infectious Diseases: Recommendations for the European Union Research Priorities. PLoS Neglected Tropical Diseases, 2008, 2, e255.	3.0	34
58	Comparison of human interleukin-1β and its 163–171 peptide in bone resorption and the immune response. Cytokine, 1991, 3, 141-148.	3.2	32
59	Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. Results and Problems in Cell Differentiation, 2017, 62, 23-43.	0.7	32
60	The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. Nanomaterials, 2021, 11, 2991.	4.1	30
61	Induction of Innate Immune Memory by Engineered Nanoparticles: A Hypothesis That May Become True. Frontiers in Immunology, 2017, 8, 734.	4.8	29
62	The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design. BioNanoMaterials, 2013, 14, .	1.4	27
63	MafB is a downstream target of the IL-10/STAT3 signaling pathway, involved in the regulation of macrophage de-activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 955-964.	4.1	27
64	Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. Journal of Colloid and Interface Science, 2021, 582, 678-700.	9.4	27
65	Identification of MIP- $1\hat{1}\pm$ /LD78 as a Monocyte Chemoattractant Released by the HTLV-I-Transformed Cell Line MT4. AIDS Research and Human Retroviruses, 1995, 11, 155-160.	1.1	26
66	Glycosylation enhances functional stability of the chemotactic cytokine CCL2. European Cytokine Network, 2003, 14, 91-6.	2.0	26
67	Gold Nanoparticles Modulate BCG-Induced Innate Immune Memory in Human Monocytes by Shifting the Memory Response towards Tolerance. Cells, 2020, 9, 284.	4.1	25
68	l̂ ² -Glucan Oligosaccharide EnhancesCD8+T Cells Immune Response Induced by a DNA Vaccine Encoding Hepatitis B Virus Core Antigen. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	23
69	In vitro Evidence of Human Immune Responsiveness Shows the Improved Potential of a Recombinant BCG Strain for Bladder Cancer Treatment. Frontiers in Immunology, 2019, 10, 1460.	4.8	21
70	Structure-function relationship of interleukin-1 giving new insights for its therapeutic potential. Biotherapy (Dordrecht, Netherlands), 1989, 1, 377-389.	0.7	20
71	What Is IL-1 for? The Functions of Interleukin-1 Across Evolution. Frontiers in Immunology, 2022, 13, 872155.	4.8	20
72	The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. International Journal of Molecular Sciences, 2020, 21, 9695.	4.1	19

#	Article	IF	CITATIONS
73	Antibacterial resistance induced by recombinant interleukin 1 in myelosuppressed mice: Effect of treatment schedule and correlation with colony-stimulating activity in the bloodstream. Cellular Immunology, 1990, 128, 250-260.	3.0	18
74	Binding and internalization of the 163–171 fragment of human IL-1β. Cytokine, 1992, 4, 201-204.	3.2	18
75	Profiling the Course of Resolving vs. Persistent Inflammation in Human Monocytes: The Role of IL-1 Family Molecules. Frontiers in Immunology, 2020, 11, 1426.	4.8	18
76	Induction of Innate Immune Memory by Engineered Nanoparticles in Monocytes/Macrophages: From Hypothesis to Reality. Frontiers in Immunology, 2020, 11, 566309.	4.8	18
77	Induction of long-term immunity against respiratory syncytial virus glycoprotein by an osmotic polymeric nanocarrier. Acta Biomaterialia, 2014, 10, 4606-4617.	8.3	17
78	IL-1 family cytokines and receptors in IgG4-related disease. Cytokine, 2018, 102, 145-148.	3.2	17
79	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environmental Science: Nano, 2020, 7, 3216-3232.	4.3	17
80	Towards nanotechnology regulation – Publish the unpublishable. Nano Today, 2011, 6, 228-231.	11.9	16
81	Interaction of nanoparticles with endotoxin <i>Importance in nanosafety testing and exploitation for endotoxin binding</i> Nanotoxicology, 2021, 15, 558-576.	3.0	16
82	Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. Nanomaterials, 2021, 11, 207.	4.1	15
83	Surface Exposure of PEG and Amines on Biodegradable Nanoparticles as a Strategy to Tune Their Interaction with Protein-Rich Biological Media. Nanomaterials, 2019, 9, 1354.	4.1	14
84	SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles. Frontiers in Immunology, 2021, 12, 758410.	4.8	14
85	Species-restricted effects of human and mouse lymphokines on macrophages. European Journal of Immunology, 1980, 10, 542-546.	2.9	13
86	Macrophage Antitumor Activity in vitro. Comparative Analysis of Cytolytic, Cytostatic, and Cytotoxic Activities of Mouse Macrophages and Human Monocytes. Immunobiology, 1984, 166, 251-262.	1.9	13
87	Immunomodulatory Activity of a Novel, Synthetic Beta-glucan (\hat{l}^2 -glu6) in Murine Macrophages and Human Peripheral Blood Mononuclear Cells. PLoS ONE, 2013, 8, e80399.	2.5	13
88	One-step immunoaffinity purification of bioactive human recombinant IL- $1\hat{l}^2$ with a monoclonal antibody directed to a well-exposed domain of the protein. Journal of Immunological Methods, 1989, 123, 1-8.	1.4	12
89	Murine interferon- \hat{I}^3 /interleukin-1 fusion proteins used as antigens for the generation of hybridomas producing monoclonal anti-interleukin-1 antibodies. Cytokine, 1991, 3, 134-140.	3.2	12
90	A Step-by-Step Approach to Improve Clinical Translation of Liposome-Based Nanomaterials, a Focus on Innate Immune and Inflammatory Responses. International Journal of Molecular Sciences, 2021, 22, 820.	4.1	12

#	Article	IF	Citations
91	Inhibiting Monocyte Recruitment to Prevent the Pro-Tumoral Activity of Tumor-Associated Macrophages in Chondrosarcoma. Cells, 2020, 9, 1062.	4.1	11
92	In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. International Journal of Environmental Research and Public Health, 2021, 18, 11769.	2.6	11
93	Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Frontiers in Immunology, 2021, 12, 692165.	4.8	10
94	Helicobacter pylori Infection of Primary Human Monocytes Boosts Subsequent Immune Responses to LPS. Frontiers in Immunology, 2022, 13, 847958.	4.8	10
95	Purification of Human Recombinant Interleukin 1 Receptor Antagonist Proteins uponBacillus subtilisSporulation. Protein Expression and Purification, 1997, 9, 219-227.	1.3	9
96	The immunostimulatory effect of ILâ \in 1 \hat{l}^2 <i>in vivo</i> is blocked by antisense peptides complementary to the loop sequence 163â \in 171. FEBS Letters, 2009, 583, 792-796.	2.8	9
97	Editorial: Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicine. Frontiers in Immunology, 2017, 8, 1688.	4.8	9
98	Microplastics interact with SARS-CoV-2 and facilitate host cell infection. Environmental Science: Nano, 2022, 9, 2653-2664.	4.3	9
99	Interaction of engineered nanomaterials with the immune system: Health-related safety and possible benefits. Current Opinion in Toxicology, 2018, 10, 74-83.	5.0	8
100	Cytokines and soluble receptors of the interleukin-1 family in Schnitzler syndrome. Scandinavian Journal of Rheumatology, 2019, 48, 235-238.	1.1	8
101	Challenges in the Design of Clinically Useful Brain-targeted Drug Nanocarriers. Current Medicinal Chemistry, 2014, 21, 4227-4246.	2.4	8
102	Macrophage antitumor activity: impaired responsiveness to interferon- \hat{l}^3 of macrophages from genetically defective mice. European Journal of Immunology, 1984, 14, 1061-1063.	2.9	7
103	Assessing Immunological Memory in the Solitary Ascidian Ciona robusta. Frontiers in Immunology, 2019, 10, 1977.	4.8	6
104	Nano-immunosafety: issues in assay validation. Journal of Physics: Conference Series, 2011, 304, 012077.	0.4	5
105	Perspectives in immunopharmacology: The future of immunosuppression. Immunology Letters, 2014, 161, 211-215.	2.5	5
106	Editorial: Interaction Between the Immune System and Nanomaterials: Safety and Medical Exploitation. Current Bionanotechnology, 2016, 2, 3-5.	0.6	5
107	Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. Nanomaterials, 2021, 11, 931.	4.1	5
108	Recombinant BCG Expressing the Subunit 1 of Pertussis Toxin Induces Innate Immune Memory and Confers Protection against Non-Related Pathogens. Vaccines, 2022, 10, 234.	4.4	5

7

#	Article	IF	CITATIONS
109	Quantitation of biologically active IL-1 by a sensitive assay based on immobilized human IL-1 receptor type II (IL-1RII). Journal of Immunological Methods, 1991, 138, 31-38.	1.4	4
110	Immune System., 2017,, 313-337.		4
111	Direct LC-MS/MS Analysis of Extra- and Intracellular Glycerophosphoinositol in Model Cancer Cell Lines. Frontiers in Immunology, 2021, 12, 646681.	4.8	4
112	Robust Immune Response Induced by Schistosoma mansoni TSP-2 Antigen Coupled to Bacterial Outer Membrane Vesicles. International Journal of Nanomedicine, 2021, Volume 16, 7153-7168.	6.7	4
113	Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. Frontiers in Toxicology, 2022, 4, 842469.	3.1	4
114	Natural antiviral activity of mouse macrophages against encephalomyocarditis virus. Antiviral Research, 1985, 5, 217-227.	4.1	3
115	Immune System. , 2012, , 169-184.		3
116	Poverty-Related Diseases College: a virtual African-European network to build research capacity. BMJ Global Health, 2016, 1, e000032.	4.7	3
117	Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Frontiers in Immunology, 2021, 12, 751683.	4.8	3
118	The SARS-CoV-2 Nucleoprotein Induces Innate Memory in Human Monocytes. Frontiers in Immunology, 0, 13, .	4.8	3
119	Sporulation: An alternative way to recover recombinant proteins fromBacillus subtilis. Biotechnology and Bioengineering, 1995, 48, 197-200.	3.3	2
120	Nanoparticles and Immunological Frailty. , 2014, , 69-75.		2
121	Engineered Nanoparticles and the Immune System: Interaction and Consequences. , 2016, , 205-226.		2
122	One hits (almost) all. Nature Immunology, 2019, 20, 1095-1097.	14.5	2
123	Arachidonic acid metabolism in macrophages: Regulation by interferons and interleukin 1. International Journal of Immunopharmacology, 1985, 7, 359.	1.1	1
124	The Interleukin-1 System: Physiopathology and New Insights for its Therapeutical Potential. International Journal of Immunopathology and Pharmacology, 1992, 5, 115-122.	2.1	1
125	Development of biologicals for the therapy of lupus erythematosus. Expert Review of Vaccines, 2007, 6, 1001-1011.	4.4	1
126	Vaccines of the Future: The Role of Inflammation and Adjuvanticity. Journal of Immunology Research, 2015, 2015, 1-2.	2.2	1

#	Article	IF	CITATIONS
127	Modulation of Macrophage Activation. , 2016, , 123-149.		1
128	Nanoparticles and Innate Immunity. , 2014, , 9-31.		0
129	SERS-based nanotoxicology assessment of gold nanoparticles. , 2021, , .		O
130	Pharmacological Strategies Using Biologics as Immunomodulatory Agents. , 2016, , 1-11.		0
131	Editorial (Thematic Issue : Exploiting Knowledge on Nano-Immune Interactions: The Present and the) Tj ETQq $1\ 1$	0.784314 0.6	rgBT /Overlo
132	IL-1 Receptor Family., 2017, , 1-10.		0
133	IL-1 Family. , 2017, , 1-9.		0
134	IL-1 Family. , 2018, , 2530-2538.		0
135	Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. SSRN Electronic Journal, 0, , .	0.4	0
136	IL-1 Receptor Family., 2018,, 2539-2548.		0
137	Gold Nanoparticles contaminated by Bacterial Endotoxin: biophysical characterization, imaging and nanotoxicology		0
138	An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System. Nanomaterials, 2022, 12, 957.	4.1	0