
Timothée Bruel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 2022, 602, 671-675.	27.8	1,202
2	Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Annals of the Rheumatic Diseases, 2022, 81, 720-728.	0.9	39
3	Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells. Nature Communications, 2022, 13, 630.	12.8	19
4	COVID-19 outbreak in vaccinated patients from a haemodialysis unit: antibody titres as a marker of protection from infection. Nephrology Dialysis Transplantation, 2022, 37, 1357-1365.	0.7	17
5	Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nature Communications, 2022, 13, 662.	12.8	18
6	Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Frontiers in Immunology, 2022, 13, 817905.	4.8	10
7	Anti-CD38 therapy impairs SARS-CoV-2 vaccine response against alpha and delta variants in patients with multiple myeloma. Blood, 2022, 139, 942-946.	1.4	24
8	A fourth dose of the mRNA-1273 SARS-CoV-2 vaccine improves serum neutralization against the Delta variant in kidney transplant recipients. Kidney International, 2022, 101, 1073-1076.	5.2	44
9	Case Report: Evolution of Humoral and Cellular Immunity in Two COVID-19 Breakthrough Infections After BNT162b2 Vaccine. Frontiers in Immunology, 2022, 13, 790212.	4.8	3
10	Fusogenicity and neutralization sensitivity of the SARS-CoV-2 Delta sublineage AY.4.2. EBioMedicine, 2022, 77, 103934.	6.1	10
11	Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nature Medicine, 2022, 28, 1297-1302.	30.7	235
12	Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nature Communications, 2022, 13, 2442.	12.8	25
13	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	7.1	27
14	Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. Journal of Experimental Medicine, 2022, 219, .	8.5	34
15	Kinetics of the SARS-CoV-2 Antibody Avidity Response Following Infection and Vaccination. Viruses, 2022, 14, 1491.	3.3	13
16	IgA dominates the early neutralizing antibody response to SARS-CoV-2. Science Translational Medicine, 2021, 13, .	12.4	840
17	Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe, The, 2021, 2, e60-e69.	7.3	78
18	Rapid decline of neutralizing antibodies against SARS-CoV-2 among infected healthcare workers. Nature Communications, 2021, 12, 844.	12.8	146

TIMOTHéE BRUEL

#	Article	IF	CITATIONS
19	Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nature Medicine, 2021, 27, 917-924.	30.7	617
20	Sex Differences in the Evolution of Neutralizing Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2021, 224, 983-988.	4.0	65
21	Sera Neutralizing Activities Against Severe Acute Respiratory Syndrome Coronavirus 2 and Multiple Variants 6 Months After Hospitalization for Coronavirus Disease 2019. Clinical Infectious Diseases, 2021, 73, e1337-e1344.	5.8	35
22	SARS-CoV-2 infection in schools in a northern French city: a retrospective serological cohort study in an area of high transmission, France, January to April 2020. Eurosurveillance, 2021, 26, .	7.0	69
23	Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies. Cell Reports Medicine, 2021, 2, 100275.	6.5	64
24	Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021, 596, 276-280.	27.8	1,803
25	Transmission of SARS-CoV-2 Alpha Variant (B.1.1.7) From a BNT162b2-Vaccinated Individual. Open Forum Infectious Diseases, 2021, 8, ofab369.	0.9	2
26	Kinetics of the Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Response and Serological Estimation of Time Since Infection. Journal of Infectious Diseases, 2021, 224, 1489-1499.	4.0	32
27	SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nature Communications, 2021, 12, 4354.	12.8	154
28	Immune checkpoint inhibitors increase T cell immunity during SARS-CoV-2 infection. Science Advances, 2021, 7, .	10.3	27
29	Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques. Nature Communications, 2021, 12, 5215.	12.8	22
30	Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nature Immunology, 2021, 22, 1428-1439.	14.5	110
31	Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine, 2021, 71, 103561.	6.1	172
32	Characteristics Associated with Olfactory and Taste Disorders in COVID-19. Neuroepidemiology, 2021, 55, 381-386.	2.3	6
33	Revisiting an IgG Fc Loss-of-Function Experiment: the Role of Complement in HIV Broadly Neutralizing Antibody b12 Activity. MBio, 2021, 12, e0174321.	4.1	7
34	Release of infectious virus and cytokines in nasopharyngeal swabs from individuals infected with non-alpha or alpha SARS-CoV-2 variants: an observational retrospective study. EBioMedicine, 2021, 73, 103637.	6.1	19
35	Syncytia formation by SARSâ€CoVâ€2â€infected cells. EMBO Journal, 2020, 39, e106267.	7.8	361
36	Serologic responses to SARS-CoV-2 infection among hospital staff with mild disease in eastern France. EBioMedicine, 2020, 59, 102915.	6.1	101

Timothée Bruel

#	Article	IF	CITATIONS
37	A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations. Science Translational Medicine, 2020, 12, .	12.4	228
38	Antiâ€ <scp>HIV</scp> â€1 antibodies trigger nonâ€lytic complement deposition on infected cells. EMBO Reports, 2020, 21, e49351.	4.5	26
39	Flow Cytometry Analysis of HIV-1 Env Conformations at the Surface of Infected Cells and Virions: Role of Nef, CD4, and SERINC5. Journal of Virology, 2020, 94, .	3.4	16
40	Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host and Microbe, 2019, 26, 623-637.e8.	11.0	56
41	HIV-1 Envelope FRETted Over by Antibodies. Cell Host and Microbe, 2019, 25, 767-768.	11.0	3
42	Accelerated thymopoiesis and improved Tâ€cell responses in HLAâ€A2/â€DR2 transgenic BRGSâ€based human immune system mice. European Journal of Immunology, 2019, 49, 954-965.	2.9	24
43	HIV-1 Envelope Recognition by Polyreactive and Cross-Reactive Intestinal B Cells. Cell Reports, 2019, 27, 572-585.e7.	6.4	21
44	Markers of the HIV-1 reservoir. Current Opinion in HIV and AIDS, 2018, 13, 383-388.	3.8	19
45	Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity. Cell Reports, 2018, 23, 2568-2581.	6.4	46
46	A human immune system mouse model with robust lymph node development. Nature Methods, 2018, 15, 623-630.	19.0	78
47	HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology, 2018, 15, 51.	2.0	43
48	Stage-specific IFN-induced and IFN gene expression reveal convergence of type I and type II IFN and highlight their role in both acute and chronic stage of pathogenic SIV infection. PLoS ONE, 2018, 13, e0190334.	2.5	10
49	Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. Journal of Virology, 2017, 91, .	3.4	63
50	Ultrasensitive HIV-1 p24 Assay Detects Single Infected Cells and Differences in Reservoir Induction by Latency Reversal Agents. Journal of Virology, 2017, 91, .	3.4	64
51	Zika virus induces massive cytoplasmic vacuolization and paraptosisâ€like death in infected cells. EMBO Journal, 2017, 36, 1653-1668.	7.8	118
52	CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature, 2017, 543, 564-567.	27.8	224
53	Broadly neutralizing antibodies suppress post-transcytosis HIV-1 infectivity. Mucosal Immunology, 2017, 10, 814-826.	6.0	13
54	HIV Fusion in Dendritic Cells Occurs Mainly at the Surface and Is Limited by Low CD4 Levels. Journal of Virology, 2017, 91, .	3.4	24

TIMOTHéE BRUEL

#	ARTICLE	IF	CITATIONS
55	CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge. Scientific Reports, 2016, 6, 34829.	3.3	7
56	Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nature Communications, 2016, 7, 10844.	12.8	201
57	Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles. PLoS ONE, 2016, 11, e0160251.	2.5	18
58	SAMHD1 Limits HIV-1 Antigen Presentation by Monocyte-Derived Dendritic Cells. Journal of Virology, 2015, 89, 6994-7006.	3.4	23
59	Long-Term Control of Simian Immunodeficiency Virus (SIV) in Cynomolgus Macaques Not Associated with Efficient SIV-Specific CD8 ⁺ T-Cell Responses. Journal of Virology, 2015, 89, 3542-3556.	3.4	21
60	Plasmacytoid Dendritic Cell Dynamics Tune Interferon-Alfa Production in SIV-Infected Cynomolgus Macaques. PLoS Pathogens, 2014, 10, e1003915.	4.7	63
61	IFITM Proteins Incorporated into HIV-1 Virions Impair Viral Fusion and Spread. Cell Host and Microbe, 2014, 16, 736-747.	11.0	184
62	Porcine colon explants in the study of innate immune response to Entamoeba histolytica. Veterinary Immunology and Immunopathology, 2012, 145, 611-617.	1.2	12
63	Towards the Establishment of a Porcine Model to Study Human Amebiasis. PLoS ONE, 2011, 6, e28795.	2.5	12
64	Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-14.	3.0	51
65	Epithelial induction of porcine suppressor of cytokine signaling 2 (SOCS2) gene expression in response to Entamoeba histolytica. Developmental and Comparative Immunology, 2010, 34, 562-571.	2.3	39
66	Persistence of Sera Neutralizing Activity Six Month after Hospitalization for COVID-19. SSRN Electronic Journal, 0, , .	0.4	0
67	Cluster of COVID-19 in Northern France: A Retrospective Closed Cohort Study. SSRN Electronic Journal, 0, , .	0.4	57
68	Structural Basis for Broad HIV-1 Neutralization by a Novel MPER-Specific Human Broadly Neutralizing Antibody. SSRN Electronic Journal, 0, , .	0.4	0
69	Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 0, , .	27.8	88