Nuria Calvet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287227/publications.pdf

Version: 2024-02-01

16451 16183 17,037 126 64 124 citations h-index g-index papers 126 126 126 3940 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Accretion and the Evolution of T Tauri Disks. Astrophysical Journal, 1998, 495, 385-400.	4.5	1,228
2	Intrinsic Near-Infrared Excesses of T Tauri Stars: Understanding the Classical T Tauri Star Locus. Astronomical Journal, 1997, 114, 288.	4.7	761
3	Disk Accretion Rates for T Tauri Stars. Astrophysical Journal, 1998, 492, 323-341.	4.5	758
4	The Structure and Emission of the Accretion Shock in T Tauri Stars. Astrophysical Journal, 1998, 509, 802-818.	4.5	497
5	Accretion Disks around Young Objects. I. The Detailed Vertical Structure. Astrophysical Journal, 1998, 500, 411-427.	4.5	492
6	Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk. Astrophysical Journal, 2002, 568, 1008-1016.	4.5	470
7	Accretion Disks around Young Objects. III. Grain Growth. Astrophysical Journal, 2001, 553, 321-334.	4.5	453
8	ASpitzer Space TelescopeStudy of Disks in the Young Ïf Orionis Cluster. Astrophysical Journal, 2007, 662, 1067-1081.	4.5	410
9	Accretion Disks around Young Objects. II. Tests of Wellâ€mixed Models with ISM Dust. Astrophysical Journal, 1999, 527, 893-909.	4.5	391
10	Accretion onto Pre-Main-Sequence Stars. Annual Review of Astronomy and Astrophysics, 2016, 54, 135-180.	24.3	391
11	Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation. Astrophysical Journal, 1994, 426, 669.	4.5	380
12	Accretion in Young Stellar/Substellar Objects. Astrophysical Journal, 2003, 592, 266-281.	4.5	345
13	The Mass Accretion Rates of Intermediate-Mass T Tauri Stars. Astronomical Journal, 2004, 128, 1294-1318.	4.7	345
14	Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri. Astrophysical Journal, 2005, 630, L185-L188.	4.5	339
15	A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus. Astrophysical Journal, Supplement Series, 2006, 165, 568-605.	7.7	337
16	Emissionâ€Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics. Astrophysical Journal, 2001, 550, 944-961.	4.5	334
17	Effects of Dust Growth and Settling in T Tauri Disks. Astrophysical Journal, 2006, 638, 314-335.	4.5	324
18	THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION. Astrophysical Journal, Supplement Series, 2010, 186, 111-174.	7.7	323

#	Article	IF	Citations
19	CSI 2264: SIMULTANEOUS OPTICAL AND INFRARED LIGHT CURVES OF YOUNG DISK-BEARING STARS IN NGC 2264 WITH∢i>COROT∢/i>and∢i>SPITZER⟨/i>—EVIDENCE FOR MULTIPLE ORIGINS OF VARIABILITY. Astronomical Journal, 2014, 147, 82.	4.7	307
20	A $\mathrm{Br}^{\hat{1}3}$ Probe of Disk Accretion in T Tauri Stars and Embedded Young Stellar Objects. Astronomical Journal, 1998, 116, 2965-2974.	4.7	283
21	TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS?. Astrophysical Journal, 2011, 729, 47.	4.5	267
22	Spectral Analysis and Classification of Herbig Ae/Be Stars. Astronomical Journal, 2004, 127, 1682-1701.	4.7	244
23	On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15. Astrophysical Journal, 2007, 670, L135-L138.	4.5	235
24	Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars. Astrophysical Journal, 1998, 492, 743-753.	4.5	234
25	UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS. Astrophysical Journal, 2010, 717, 441-457.	4.5	229
26	Circumstellar Disks in the Orion Nebula Cluster. Astronomical Journal, 1998, 116, 1816-1841.	4.7	222
27	Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. I. Line Profile Observations. Astronomical Journal, 1998, 116, 455-468.	4.7	212
28	A <i>Spitzer</i> View of Protoplanetary Disks in the \hat{I}^3 Velorum Cluster. Astrophysical Journal, 2008, 686, 1195-1208.	4.5	207
29	The Truncated Disk of CoKu Tau/4. Astrophysical Journal, 2005, 621, 461-472.	4.5	200
30	Unveiling the Inner Disk Structure of T Tauri Stars. Astrophysical Journal, 2003, 597, L149-L152.	4.5	196
31	Magnetospheres and Disk Accretion in Herbig Ae/Be Stars. Astrophysical Journal, 2004, 617, 406-417.	4.5	187
32	Herbig Ae/Be Stars in nearby OB Associations. Astronomical Journal, 2005, 129, 856-871.	4.7	182
33	The Structure and Emission of the Accretion Shock in T Tauri Stars. II. The Ultravioletâ€Continuum Emission. Astrophysical Journal, 2000, 544, 927-932.	4.5	178
34	ACCRETION RATES FOR T TAURI STARS USING NEARLY SIMULTANEOUS ULTRAVIOLET AND OPTICAL SPECTRA. Astrophysical Journal, 2013, 767, 112.	4.5	170
35	A <i>SPITZER</i> IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS. Astrophysical Journal, 2011, 728, 49.	4.5	157
36	<i>Spitzer</i> Observations of the Orion OB1 Association: Disk Census in the Lowâ€Mass Stars. Astrophysical Journal, 2007, 671, 1784-1799.	4.5	151

#	Article	IF	CITATIONS
37	The Nearâ€Infrared Sizeâ€Luminosity Relations for Herbig Ae/Be Disks. Astrophysical Journal, 2005, 624, 832-840.	4.5	138
38	Why Do T Tauri Disks Accrete?. Astrophysical Journal, 2006, 648, 484-490.	4.5	136
39	THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS. Astrophysical Journal, Supplement Series, 2016, 224, 5.	7.7	136
40	Accretion rates and accretion tracers of Herbig Ae/Be stars. Astronomy and Astrophysics, 2011, 535, A99.	5.1	129
41	THE <i>SPITZER</i> INFRARED SPECTROGRAPH SURVEY OF T TAURI STARS IN TAURUS. Astrophysical Journal, Supplement Series, 2011, 195, 3.	7.7	129
42	DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS. Astrophysical Journal, 2009, 703, 1964-1983.	4.5	124
43	The CIDA-QUEST Large-Scale Survey of Orion OB1: Evidence for Rapid Disk Dissipation in a Dispersed Stellar Population. Science, 2001, 291, 93-96.	12.6	121
44	The Hot Inner Disk of FU Orionis. Astrophysical Journal, 2007, 669, 483-492.	4.5	121
45	CRYSTALLINE SILICATES AND DUST PROCESSING IN THE PROTOPLANETARY DISKS OF THE TAURUS YOUNG CLUSTER. Astrophysical Journal, Supplement Series, 2009, 180, 84-101.	7.7	120
46	The CIDA Variability Survey of Orion OB1. I. The Low-Mass Population of Ori OB1a and 1b. Astronomical Journal, 2005, 129, 907-926.	4.7	117
47	Flat spectrum T Tauri stars: The case for infall. Astrophysical Journal, 1994, 434, 330.	4.5	112
48	CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND LyÎ \pm RADIATION. Astrophysical Journal, 2011, 726, 29.	4.5	111
49	Probing the Dust and Gas in the Transitional Disk of CS Cha with <i>Spitzer</i> . Astrophysical Journal, 2007, 664, L111-L114.	4.5	109
50	THE EVOLUTIONARY STATE OF THE PRE-MAIN SEQUENCE POPULATION IN OPHIUCHUS: A LARGE INFRARED SPECTROGRAPH SURVEY. Astrophysical Journal, Supplement Series, 2010, 188, 75-122.	7.7	108
51	CSI 2264: CHARACTERIZING ACCRETION-BURST DOMINATED LIGHT CURVES FOR YOUNG STARS IN NGC 2264. Astronomical Journal, 2014, 147, 83.	4.7	105
52	ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS. Astrophysical Journal, 2012, 747, 103.	4.5	102
53	A New Probe of the Planet-forming Region in T Tauri Disks. Astrophysical Journal, 2004, 614, L133-L136.	4.5	101
54	Confirmation of a Gapped Primordial Disk around LkCa 15. Astrophysical Journal, 2008, 682, L125-L128.	4.5	95

#	Article	IF	CITATIONS
55	PAH Emission from Herbig Ae/Be Stars. Astrophysical Journal, 2008, 684, 411-429.	4.5	94
56	A FAR-ULTRAVIOLET ATLAS OF LOW-RESOLUTION <i>HUBBLE SPACE TELESCOPE</i> SPECTRA OF T TAURI STARS. Astrophysical Journal, 2012, 744, 121.	4.5	90
57	25 Orionis: A Kinematically Distinct 10 Myr Old Group in Orion OB1a. Astrophysical Journal, 2007, 661, 1119-1128.	4.5	89
58	CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES. Astronomical Journal, 2015, 149, 130.	4.7	82
59	MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527. Astrophysical Journal, 2013, 771, 48.	4.5	77
60	NEAR-ULTRAVIOLET EXCESS IN SLOWLY ACCRETING T TAURI STARS: LIMITS IMPOSED BY CHROMOSPHERIC EMISSION. Astrophysical Journal, 2011, 743, 105.	4.5	75
61	HOT GAS LINES IN T TAURI STARS. Astrophysical Journal, Supplement Series, 2013, 207, 1.	7.7	69
62	SpitzerObservations of the Orion OB1 Association: Secondâ€Generation Dust Disks at 5–10 Myr. Astrophysical Journal, 2006, 652, 472-481.	4.5	67
63	Accretion, Kinematics, and Rotation in the Orion Nebula Cluster: Initial Results from Hectochelle. Astronomical Journal, 2005, 129, 363-381.	4.7	66
64	Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142. Astrophysical Journal, 2017, 838, 20.	4.5	66
65	FAR-ULTRAVIOLET H ₂ EMISSION FROM CIRCUMSTELLAR DISKS. Astrophysical Journal, 2009, 703, L137-L141.	4.5	63
66	A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing. Science, 2020, 369, 1233-1238.	12.6	63
67	M c Neil's Nebula in Orion: The Outburst History. Astrophysical Journal, 2004, 606, L123-L126.	4.5	62
68	<i>SPITZER</i> OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS. Astrophysical Journal, 2010, 722, 1226-1239.	4.5	61
69	Modeling the $H < i > \hat{l} \pm < i > \hat{l}$ ine emission around classical T Tauri stars using magnetospheric accretion and disk wind models. Astronomy and Astrophysics, 2010, 522, A104.	5.1	58
70	<i>SPITZER</i> INFRARED SPECTROGRAPH SURVEY OF YOUNG STARS IN THE CHAMAELEON I STAR-FORMING REGION. Astrophysical Journal, Supplement Series, 2011, 193, 11.	7.7	58
71	<i>Hubble</i> and <i>Spitzer</i> Observations of an Edgeâ€on Circumstellar Disk around a Brown Dwarf. Astrophysical Journal, 2007, 666, 1219-1225.	4.5	58
72	The CIDA Variability Survey of Orion OB1. II. Demographics of the Young, Low-mass Stellar Populations [*] . Astronomical Journal, 2019, 157, 85.	4.7	50

#	Article	IF	CITATIONS
7 3	EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS. Astronomical Journal, 2011, 141, 127.	4.7	49
74	PROBING DYNAMICAL PROCESSES IN THE PLANET-FORMING REGION WITH DUST MINERALOGY. Astrophysical Journal Letters, 2012, 759, L10.	8.3	48
7 5	TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A. Astrophysical Journal, 2013, 769, 149.	4.5	47
76	THE FAR-ULTRAVIOLET "CONTINUUM―IN PROTOPLANETARY DISK SYSTEMS. II. CARBON MONOXIDE FOURT POSITIVE EMISSION AND ABSORPTION*. Astrophysical Journal, 2011, 734, 31.	H _{4.5}	46
77	Multiple Spiral Arms in the Disk around Intermediate-mass Binary HD 34700A. Astrophysical Journal, 2019, 872, 122.	4.5	46
78	CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS. Astrophysical Journal, 2013, 775, 114.	4.5	45
79	CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES*. Astronomical Journal, 2016, 151, 60.	4.7	44
80	CHARACTERIZING THE STELLAR PHOTOSPHERES AND NEAR-INFRARED EXCESSES IN ACCRETING T TAURI SYSTEMS. Astrophysical Journal, 2013, 769, 73.	4.5	42
81	The Spatial Distribution of Fluorescent H2Emission near T Tauri. Astrophysical Journal, 2003, 591, 275-282.	4.5	39
82	Magnetospheric Accretion as a Source of $H\hat{l}\pm$ Emission from Protoplanets around PDS 70. Astrophysical Journal, 2019, 885, 94.	4.5	39
83	A Slowly Accreting ~10 Myr-old Transitional Disk in Orion OB1a. Astrophysical Journal, 2008, 689, L145-L148.	4.5	36
84	<i>Herschel</i> -PACS imaging of protostars in the HH 1â€"2 outflow complex. Astronomy and Astrophysics, 2010, 518, L122.	5.1	36
85	A SPECTROSCOPIC CENSUS IN YOUNG STELLAR REGIONS: THE $\ddot{\text{I}}f$ ORIONIS CLUSTER. Astrophysical Journal, 2014, 794, 36.	4.5	35
86	THE EVOLUTION OF ACCRETION IN YOUNG STELLAR OBJECTS: STRONG ACCRETORS AT 3-10 Myr. Astrophysical Journal, 2014, 790, 47.	4.5	34
87	<i>SPITZER</i> OBSERVATIONS OF THE λ ORIONIS CLUSTER. I. THE FREQUENCY OF YOUNG DEBRIS DISKS AT 5 Myr. Astrophysical Journal, 2009, 707, 705-715.	4.5	33
88	PENELLOPE: The ESO data legacy program to complement the <i>Hubble</i> UV Legacy Library of Young Stars (ULLYSES). Astronomy and Astrophysics, 2021, 650, A196.	5.1	32
89	RESOLVED MULTIFREQUENCY RADIO OBSERVATIONS OF GG Tau. Astrophysical Journal, 2014, 787, 148.	4.5	28
90	On the origin of the correlations between the accretion luminosity and emission line luminosities in pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2837-2844.	4.4	28

#	Article	IF	CITATIONS
91	USING FUV TO IR VARIABILITY TO PROBE THE STAR–DISK CONNECTION IN THE TRANSITIONAL DISK OF GM AUR. Astrophysical Journal, 2015, 805, 149.	4.5	28
92	IMAGING THE PHOTOEVAPORATING DISK AND RADIO JET OF GM AUR. Astrophysical Journal, 2016, 829, 1.	4.5	28
93	FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2. Astrophysical Journal Letters, 2012, 749, L24.	8.3	26
94	A HERSCHEL VIEW OF PROTOPLANETARY DISKS IN THE $\ddot{l}f$ ORI CLUSTER. Astrophysical Journal, 2016, 829, 38.	4.5	26
95	Variable Accretion onto Protoplanet Host Star PDS 70. Astrophysical Journal, 2020, 892, 81.	4.5	26
96	The low-mass star and sub-stellar populations of the 25 Orionis group. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1793-1811.	4.4	24
97	An ALMA Survey of Protoplanetary Disks in Lynds 1641. Astrophysical Journal, 2021, 913, 123.	4.5	23
98	Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073. Astrophysical Journal, 2018, 869, 164.	4.5	21
99	Irregular Dust Features around Intermediate-mass Young Stars with GPI: Signs of Youth or Misaligned Disks?. Astrophysical Journal, 2020, 888, 7.	4.5	21
100	Investigating the Relative Gas and Small Dust Grain Surface Heights in Protoplanetary Disks. Astrophysical Journal, 2021, 913, 138.	4.5	21
101	The Evolution of the Inner Regions of Protoplanetary Disks. Astrophysical Journal, 2020, 893, 56.	4.5	18
102	THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 226, 8.	7.7	17
103	Stellar Rotation of T Tauri Stars in the Orion Star-forming Complex. Astrophysical Journal, 2021, 923, 177.	4.5	17
104	Linking Signatures of Accretion with Magnetic Field Measurements–Line Profiles are not Significantly Different in Magnetic and Non-magnetic Herbig Ae/Be Stars. Astrophysical Journal, 2018, 852, 5.	4.5	16
105	Measuring the density structure of an accretion hot spot. Nature, 2021, 597, 41-44.	27.8	16
106	SHORT GAS DISSIPATION TIMESCALES: DISKLESS STARS IN TAURUS AND CHAMAELEON I. Astrophysical Journal Letters, 2012, 752, L20.	8.3	15
107	The number fraction of discs around brown dwarfs in Orion OB1a and the 25 Orionis group. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3490-3502.	4.4	15
108	The ODYSSEUS Survey. Motivation and First Results: Accretion, Ejection, and Disk Irradiation of CVSO 109. Astronomical Journal, 2022, 163, 114.	4.7	15

#	Article	IF	CITATIONS
109	Herschel PACS Observations of 4–10 Myr Old Classical T Tauri Stars in Orion OB1. Astrophysical Journal, 2018, 859, 1.	4.5	14
110	The Architecture of the V892 Tau System: The Binary and Its Circumbinary Disk. Astrophysical Journal, 2021, 915, 131.	4.5	14
111	A Cavity of Large Grains in the Disk around the Group II Herbig Ae/Be Star HD 142666. Astrophysical Journal, 2018, 860, 7.	4.5	13
112	Tracing Accretion onto Herbig Ae/Be Stars Using the Brγ Line. Astrophysical Journal, 2022, 926, 229.	4.5	13
113	A Census of the Low Accretors. I. The Catalog. Astronomical Journal, 2022, 163, 74.	4.7	12
114	THE ROTATION PERIOD DISTRIBUTIONS OF 4–10 Myr T TAURI STARS IN ORION OB1: NEW CONSTRAINTS ON PRE-MAIN-SEQUENCE ANGULAR MOMENTUM EVOLUTION. Astronomical Journal, 2016, 152, 198.	4.7	10
115	Characterizing the Stellar Population of NGC 1980. Astronomical Journal, 2017, 154, 29.	4.7	10
116	High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila. Astrophysical Journal, 2017, 848, 18.	4.5	10
117	Herschel Observations of Protoplanetary Disks in Lynds 1641*. Astrophysical Journal, 2018, 863, 13.	4.5	10
118	Complex Magnetospheric Accretion Flows in the Low Accretor CVSO 1335. Astrophysical Journal, 2019, 884, 86.	4.5	10
119	The Evolution of Protoplanetary Disks: Probing the Inner Disk of Very Low Accretors. Astrophysical Journal, 2018, 861, 73.	4.5	9
120	A LARGE-SCALE OPTICAL-NEAR-INFRARED SURVEY FOR BROWN DWARFS AND VERY LOW MASS STARS IN THE ORION OB1 ASSOCIATION. Astronomical Journal, 2008, 136, 51-66.	4.7	8
121	A Transitional Disk around an Intermediate-mass Star in the Sparse Population of the Orion OB1 Association. Astrophysical Journal, 2018, 867, 116.	4.5	7
122	Testing the Potential for Radio Variability in Disks around T Tauri Stars with Observations and Chemical Modeling. Astrophysical Journal, 2022, 924, 104.	4.5	6
123	An Incipient Debris Disk in the Chamaeleon I Cloud. Astrophysical Journal, 2017, 844, 60.	4.5	5
124	A study of accretion and disk diagnostics in the NGC 2264 cluster. Astronomy and Astrophysics, 2019, 629, A67.	5.1	5
125	Substructure and Signs of Planet Formation in the Disk of HD 169142. Proceedings of the International Astronomical Union, 2013, 8, 145-148.	0.0	O
126	TW Hydrae: multi-wavelength interferometry of a transition disk. Proceedings of the International Astronomical Union, 2013, 8, 104-108.	0.0	0