
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure and conformational stability of a galectin-1 tandem-repeat mutant with a short linker. Glycobiology, 2022, 32, 251-259.	2.5	1
2	Structural and biochemical characterizations of the novel autolysin Acd24020 from Clostridioides difficile and its fullâ€function catalytic domain as a lytic enzyme. Molecular Microbiology, 2021, 115, 684-698.	2.5	9
3	Crystal structure of a novel homodimeric <scp>l</scp> â€ribulose 3â€epimerase from <i>Methylomonus</i> sp FEBS Open Bio, 2021, 11, 1621-1637.	2.3	8
4	X-ray structures of Clostridium perfringens sortase C with C-terminal cell wall sorting motif of LPST demonstrate role of subsite for substrate-binding and structural variations of catalytic site. Biochemical and Biophysical Research Communications, 2021, 554, 138-144.	2.1	1
5	Modulation of the carbohydrate-binding specificity of two Xenopus proto-type galectins by site-directed mutagenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140684.	2.3	3
6	Structural and biochemical characterization of the Clostridium perfringens-specific Zn2+-dependent amidase endolysin, Psa, catalytic domain. Biochemical and Biophysical Research Communications, 2021, 576, 66-72.	2.1	3
7	X-ray crystal structures of α-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–ε-caprolactone, and β-cyclodextrin–ε-caprolactam inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 93-99.	1.6	2
8	Structures of human galectin-10/monosaccharide complexes demonstrate potential of monosaccharides as effectors in forming Charcot-Leyden crystals. Biochemical and Biophysical Research Communications, 2020, 525, 87-93.	2.1	6
9	Structures of major pilins in <i>Clostridium perfringens</i> demonstrate dynamic conformational change. Acta Crystallographica Section D: Structural Biology, 2019, 75, 718-732.	2.3	7
10	X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. Acta Crystallographica Section D: Structural Biology, 2019, 75, 841-851.	2.3	18
11	The first crystal structure of manganese superoxide dismutase from the genusStaphylococcus. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 135-142.	0.8	5
12	Mutagenesis-induced conformational change in domain B of a pullulan-hydrolyzing α-amylase TVA I. Amylase, 2018, 2, 1-10.	1.6	3
13	Three-Dimensional Structures of Galectins. Trends in Glycoscience and Glycotechnology, 2018, 30, SE41-SE50.	0.1	20
14	X-ray structure of <i>Arthrobacter globiformis</i> M30 ketose 3-epimerase for the production of <scp>D</scp> -allulose from <scp>D</scp> -fructose. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 669-676.	0.8	18
15	Three-Dimensional Structures of Galectins. Trends in Glycoscience and Glycotechnology, 2018, 30, SJ1-SJ10.	0.1	1
16	Structural and biochemical characterization of the <i>Clostridium perfringens</i> autolysin catalytic domain. FEBS Letters, 2017, 591, 231-239.	2.8	9
17	X-ray structure of Clostridium perfringens sortase B cysteine transpeptidase. Biochemical and Biophysical Research Communications, 2017, 493, 1267-1272.	2.1	5
18	X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction. Scientific Reports, 2017, 7, 2790.	3.3	13

#	Article	IF	CITATIONS
19	X-ray structure of a protease-resistant mutant form of human galectin-9 having two carbohydrate recognition domains with a metal-binding site. Biochemical and Biophysical Research Communications, 2017, 490, 1287-1293.	2.1	5
20	Role of the Tyr270 residue in 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti. Journal of Bioscience and Bioengineering, 2017, 123, 154-162.	2.2	5
21	X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates. Applied Microbiology and Biotechnology, 2016, 100, 10403-10415.	3.6	11
22	Structural analysis of fungus-derived FAD glucose dehydrogenase. Scientific Reports, 2015, 5, 13498.	3.3	89
23	Essentiality of tetramer formation of Cellulomonas parahominis L-ribose isomerase involved in novel L-ribose metabolic pathway. Applied Microbiology and Biotechnology, 2015, 99, 6303-6313.	3.6	13
24	Crystal structure of a Xenopus laevis skin proto-type galectin, close to but distinct from galectin-1. Glycobiology, 2015, 25, 792-803.	2.5	10
25	Structure-Function Relationship of Bacterial SH3 Domains. , 2015, , 71-89.		10
26	<scp>X</scp> â€ray structure of a novel endolysin encoded by episomal phage <scp>phiSM</scp> 101 of <scp><i>C</i></scp> <i>lostridium perfringens</i> . Molecular Microbiology, 2014, 92, 326-337.	2.5	42
27	Xâ€ray structure of a novel <scp>l</scp> â€ribose isomerase acting on a nonâ€natural sugar <scp>l</scp> â€ribose as its ideal substrate. FEBS Journal, 2014, 281, 3150-3164.	4.7	14
28	Purification, crystallization and preliminary X-ray analysis of an HA17–HA70 (HA2–HA3) complex from <i>Clostridium botulinum</i> type C progenitor toxin. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 64-67.	0.8	3
29	Chemoenzymatic Synthesis of the Immunoglobulin Domain of Timâ€3 Carrying a Complexâ€Type Nâ€Glycan by Using a Oneâ€pot Ligation. Angewandte Chemie - International Edition, 2013, 52, 9733-9737.	13.8	60
30	Structure of <scp>l</scp> â€rhamnose isomerase in complex with <scp>l</scp> â€rhamnopyranose demonstrates the sugarâ€ring opening mechanism and the role of a substrate subâ€binding site. FEBS Open Bio, 2013, 3, 35-40.	2.3	8
31	Self-association of the galectin-9 C-terminal domain via the opposite surface of the sugar-binding site. Journal of Biochemistry, 2013, 153, 463-471.	1.7	10
32	<scp>X</scp> â€ray structure of a proteaseâ€resistant mutant form of human galectinâ€8 with two carbohydrate recognition domains. FEBS Journal, 2012, 279, 3937-3951.	4.7	34
33	Carbohydrate recognition mechanism of HA70 from <i>Clostridium botulinum</i> deduced from Xâ€ray structures in complexes with sialylated oligosaccharides. FEBS Letters, 2012, 586, 2404-2410.	2.8	29
34	Monooxygenation by a thermophilic cytochrome P450 via direct electron donation from NADH. Metallomics, 2011, 3, 389.	2.4	6
35	Overexpression, crystallization and preliminary X-ray diffraction analysis of <scp>L</scp> -ribose isomerase from <i>Acinetobacter</i> sp. strain DL-28. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1281-1284.	0.7	2
36	Crystal structures of rare disaccharides, α-d-glucopyranosyl β-d-psicofuranoside, and α-d-galactopyranosyl β-d-psicofuranoside. Carbohydrate Research, 2011, 346, 1182-1185.	2.3	7

#	Article	IF	CITATIONS
37	X-ray structures of Bacillus pallidus d-arabinose isomerase and its complex with l-fucitol. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1359-1368.	2.3	17
38	Catalytic reaction mechanism of <i>Pseudomonas stutzeri</i> lâ€rhamnose isomerase deduced from Xâ€ray structures. FEBS Journal, 2010, 277, 1045-1057.	4.7	19
39	X-ray Structures of Human Galectin-9 C-terminal Domain in Complexes with a Biantennary Oligosaccharide and Sialyllactose. Journal of Biological Chemistry, 2010, 285, 36969-36976.	3.4	43
40	Elucidation of the role of Ser329 and the C-terminal region in the catalytic activity of Pseudomonas stutzeril-rhamnose isomerase. Protein Engineering, Design and Selection, 2010, 23, 919-927.	2.1	6
41	Crystallization and preliminary X-ray diffraction analysis of a protease-resistant mutant form of human galectin-8. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 512-514.	0.7	2
42	Crystallization and preliminary X-ray analysis of AAMS amidohydrolase, the final enzyme in degradation pathway I of pyridoxine. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 829-831.	0.7	0
43	Crystal structures of open and closed forms of cyclo/maltodextrinâ€binding protein. FEBS Journal, 2009, 276, 3008-3019.	4.7	25
44	β-‹scp>D-Altrose. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o280-o280.	0.2	1
45	Structure of a putative molybdenum-cofactor biosynthesis protein C (MoaC) from <i>Sulfolobus tokodaii</i> (ST0472). Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 589-592.	0.7	6
46	Overexpression, purification, crystallization and preliminary X-ray crystal analysis of <i>Bacillus pallidus</i> <scp>D</scp> -arabinose isomerase. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 945-948.	0.7	4
47	Crystal Structure of Aspergillus niger Isopullulanase, a Member of Glycoside Hydrolase Family 49. Journal of Molecular Biology, 2008, 376, 210-220.	4.2	23
48	Structural Insights into the Substrate Specificity and Function of Escherichia coli K12 YgjK, a Glucosidase Belonging to the Glycoside Hydrolase Family 63. Journal of Molecular Biology, 2008, 381, 116-128.	4.2	42
49	Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1. Glycobiology, 2008, 18, 1065-1073.	2.5	68
50	The Structures of l-Rhamnose Isomerase from Pseudomonas stutzeri in Complexes with l-Rhamnose and d-Allose Provide Insights into Broad Substrate Specificity. Journal of Molecular Biology, 2007, 365, 1505-1516.	4.2	32
51	Crystal Structures of d-Tagatose 3-Epimerase from Pseudomonas cichorii and Its Complexes with d-Tagatose and d-Fructose. Journal of Molecular Biology, 2007, 374, 443-453.	4.2	86
52	Purification, crystallization and preliminary X-ray diffraction studies ofD-tagatose 3-epimerase fromPseudomonas cichorii. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 123-125.	0.7	9
53	Structural basis for cyclodextrin recognition by Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein. FEBS Journal, 2007, 274, 2109-2120.	4.7	20
54	X-ray Structures of the Microglia/Macrophage-specific Protein Iba1 from Human and Mouse Demonstrate Novel Molecular Conformation Change Induced by Calcium binding. Journal of Molecular Biology, 2006, 364, 449-457.	4.2	23

#	Article	lF	CITATIONS
55	Crystallization and preliminary X-ray diffraction studies ofL-rhamnose isomerase fromPseudomonas stutzeri. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 550-552.	0.7	4
56	Structure of a complex of Thermoactinomyces vulgaris R-47 α-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Carbohydrate Research, 2006, 341, 1041-1046.	2.3	20
57	Spectroscopic study on the interaction of cyclodextrins with naphthyl groups attached to poly(acrylamide) backbone. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 13-19.	3.9	18
58	Complex Formation of Cyclodextrins with Various Thiophenes and their Polymerization in Water: Preparation of Poly-pseudo-rotaxanes containing Poly(thiophene)s. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 45-53.	1.6	22
59	Complexes of Thermoactinomyces vulgaris R-47 α-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with α-(1,6) glycosidic linkages. FEBS Journal, 2005, 272, 6145-6153.	4.7	35
60	Crystallization and preliminary X-ray analysis ofThermoactinomyces vulgarisR-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 302-304.	0.7	3
61	X-ray Structures of NADPH-dependent Carbonyl Reductase from Sporobolomyces salmonicolor Provide Insights into Stereoselective Reductions of Carbonyl Compounds. Journal of Molecular Biology, 2005, 352, 551-558.	4.2	54
62	A [2]Rotaxane Capped by a Cyclodextrin and a Guest:Â Formation of Supramolecular [2]Rotaxane Polymer. Journal of the American Chemical Society, 2005, 127, 2034-2035.	13.7	100
63	Mutagenesis and Structural Analysis of Thermoactinomyces vulgaris R-47 .ALPHAAmylase II (TVA II). Journal of Applied Glycoscience (1999), 2005, 52, 225-231.	0.7	1
64	X-ray Crystallographic Study of Glucodextranase from a Gram-positive Bacterium, Arthrobacter globiformis 142. Journal of Applied Glycoscience (1999), 2005, 52, 145-151.	0.7	0
65	Structural Insights into Substrate Specificity and Function of Glucodextranase. Journal of Biological Chemistry, 2004, 279, 10575-10583.	3.4	43
66	Complex Structures of Thermoactinomyces vulgaris R-47 α-Amylase 2 with Acarbose and Cyclodextrins Demonstrate the Multiple Substrate Recognition Mechanism. Journal of Biological Chemistry, 2004, 279, 31033-31040.	3.4	27
67	The crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) complexed with transglycosylated product. FEBS Journal, 2004, 271, 2530-2538.	0.2	21
68	Structure and direct electrochemistry of cytochrome P450 from the thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. Journal of Inorganic Biochemistry, 2004, 98, 1194-1199.	3.5	50
69	Crystallization and preliminary X-ray crystallographic analysis of macrophage/microglia-specific calcium-binding protein Iba1. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 569-571.	2.5	1
70	Crystal Structure of the Complex of \hat{I}^2 -Cyclodextrin with Bithiophene and Their Oxidative Polymerization in Water. Macromolecules, 2004, 37, 3962-3964.	4.8	40
71	Complex Structures of Thermoactinomyces vulgaris R-47 α-Amylase 1 with Malto-oligosaccharides Demonstrate the Role of Domain N Acting as a Starch-binding Domain. Journal of Molecular Biology, 2004, 335, 811-822.	4.2	91
72	Crystal structure of chartreusin derivative A132. Carbohydrate Research, 2003, 338, 1523-1525.	2.3	2

#	Article	IF	CITATIONS
73	Mutual conversion of substrate specificities of Thermoactinomyces vulgaris R-47 α-amylases TVAI and TVAII by site-directed mutagenesis. Carbohydrate Research, 2003, 338, 1553-1558.	2.3	6
74	Crystal Structures of Aspergillus oryzae Aspartic Proteinase and its Complex with an Inhibitor Pepstatin at 1.9Ã Resolution. Journal of Molecular Biology, 2003, 326, 1503-1511.	4.2	16
75	Crystal Structures and Structural Comparison of Thermoactinomyces vulgaris R-47 α-Amylase 1 (TVAI) at 1.6à Resolution and α-Amylase 2 (TVAII) at 2.3à Resolution. Journal of Molecular Biology, 2002, 318, 443-453.	4.2	57
76	Role of Phe286 in the recognition mechanism of cyclomaltooligosaccharides (cyclodextrins) by Thermoactinomyces vulgaris R-47 α-amylase 2 (TVAII). X-ray structures of the mutant TVAIIs, F286A and F286Y, and kinetic analyses of the Phe286-replaced mutant TVAIIs. Carbohydrate Research, 2001, 334, 309-313.	2.3	18
77	Crystal structures of cyclomaltohexaose (α-cyclodextrin) complexes with p-bromophenol and m-bromophenol. Carbohydrate Research, 2001, 332, 235-240.	2.3	16
78	Structures of Thermoactinomyces vulgaris R-47 α-Amylase II Complexed with Substrate Analogues. Bioscience, Biotechnology and Biochemistry, 2001, 65, 619-626.	1.3	28
79	The Deletion of Amino-Terminal Domain in Thermoactinomyces vulgaris R-47 α-Amylases: Effects of domain N on Activity, Specificity, Stability and Dimerization. Bioscience, Biotechnology and Biochemistry, 2001, 65, 401-408.	1.3	23
80	Average Crystal Structure of (Pro-Pro-Gly)9 at 1.0Ã Resolution. Polymer Journal, 2001, 33, 812.	2.7	32
81	Crystal Structures and Functions of Two Pullulan-hydrolyzing .ALPHAAmylases from a Thermophilic Actinomycete, Thermoactinomyces vulgaris Journal of Applied Glycoscience (1999), 2001, 48, 163-169.	0.7	Ο
82	A Novel Pseudo-Polyrotaxane Structure Composed of Cyclodextrins and a Straight-Chain Polymer:Â Crystal Structures of Inclusion Complexes of β-Cyclodextrin with Poly(trimethylene oxide) and Poly(propylene glycol). Macromolecules, 2000, 33, 1500-1502.	4.8	85
83	Crystal structures of cyclomaltohexaose (α-cyclodextrin) complexes with p-chlorophenol and p-cresol. Carbohydrate Research, 1999, 320, 261-266.	2.3	14
84	Crystal structure of the E166A mutant of extended-spectrum β-lactamase toho-1 at 1.8 à resolution 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 285, 2079-2087.	4.2	83
85	Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Ã resolution. Journal of Molecular Biology, 1999, 287, 907-921.	4.2	114
86	7/2-Helical model for collagen — Evidence from model peptides. Journal of Chemical Sciences, 1999, 111, 19-34.	1.5	24
87	Crystal structures of two forms of a 2:1 cyclomaltohexaose (α-cyclodextrin)/4,4′-biphenyldicarboxylic acid inclusion complex. Carbohydrate Research, 1998, 312, 177-181.	2.3	15
88	Crystallization of (Pro-Hyp-Gly)10and Its Triple-Helical Structure Deduced from Cylindrical Patterson Map. Chemistry Letters, 1998, 27, 385-386.	1.3	3
89	Molecular and Crystal Structures of Dodecyltrimethylammonium Bromide and its Complex with <i>p</i> -Phenylphenol. Molecular Crystals and Liquid Crystals, 1997, 300, 31-43.	0.3	23
90	A Real Knot in Protein. Journal of the American Chemical Society, 1996, 118, 8945-8946.	13.7	80

#	Article	IF	CITATIONS
91	Crystal Structure of S-Adenosylmethionine Synthetase. Journal of Biological Chemistry, 1996, 271, 136-147.	3.4	112
92	Molecular and crystal structures of two 1,6-anhydro-β-maltotriose derivatives. Carbohydrate Research, 1995, 278, 195-203.	2.3	4
93	Crystallization and Preliminary X-Ray Analysis of Thermoactinomyces vulgaris R-47 α-Amylase II. Journal of Structural Biology, 1995, 114, 229-231.	2.8	6
94	Multiple Binding Modes of Anticancer Drug Actinomycin D: X-ray, Molecular Modeling, and Spectroscopic Studies of d(GAAGCTTC)2-Actinomycin D Complexes and Its Host DNA. Journal of the American Chemical Society, 1994, 116, 4154-4165.	13.7	88
95	Toward the Design of an RNA:DNA Hybrid Binding Agent. Journal of the American Chemical Society, 1994, 116, 2243-2253.	13.7	18
96	Role of D-Valine Residues in the Antitumor Drug Actinomycin D:Replacement of D-Valines with Other D-Amino Acids Changes the DNA Binding Characteristics and Transcription Inhibitory Activities. Journal of the American Chemical Society, 1994, 116, 7971-7982.	13.7	28
97	Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. Journal of Molecular Biology, 1992, 225, 445-456.	4.2	157
98	Three-Dimensional Structures of Aspartate Aminotransferase from Escherichia coli and Its Mutant Enzyme at 2.5 Ã Resolution. Journal of Biochemistry, 1990, 108, 175-184.	1.7	78
99	Crystallization and Preliminary X-Ray Characterization of Branched-Chain Amino Acid Aminotransferase from Escherichia coli. Journal of Biochemistry, 1989, 105, 671-672.	1.7	11
100	Crystal and Molecular Structure of Double Macrocyclic Inclusion Complexes, Î ³ -Cyclodextrin·12-Crown-4·NaCl, a Model for the Transport of Ions through Membranes. Bulletin of the Chemical Society of Japan, 1988, 61, 3825-3830.	3.2	28
101	Three-Dimensional Structure of Aspartate Aminotransferase from Escherichia coli at 2.8 Ã Resolution. Journal of Biochemistry, 1988, 104, 317-318.	1.7	38
102	Crystal and molecular structures of double macrocyclic inclusion complexes composed of cyclodextrins, crown ethers, and cations. Journal of the American Chemical Society, 1987, 109, 2409-2414.	13.7	100
103	Crystal and molecular structure of the γ-cyclodextrin–12-crown-4 1 : 1 inclusion complex. Journal of the Chemical Society Chemical Communications, 1986, , 690-691.	2.0	41
104	Formation and reactions of 1-silacyclobut-2-en-1-ylidene and molecular structures of methanol and diene adducts. Organometallics, 1986, 5, 2447-2451.	2.3	13
105	Structure of Ursodeoxycholic Acid. Yakugaku Zasshi, 1985, 105, 1115-1121.	0.2	14
106	Silicon-carbon unsaturated compounds. 19. Nickel-catalyzed reactions of silacyclopropenes and (phenylethynyl)polysilanes wih phenyl(trimethylsilyl)acetylene and molecular structure of 1,4,4-trimethyl-3,6-diphenyl-1-1,2,5-tris(trimethylsilyl)-1,4-disilacyclohexa-2,5-diene. Organometallics, 1985, 4, 2040-2046.	2.3	58
107	Resolution and structural determination of unsymmetrically 6A6D-disubstituted .betacyclodextrin. Journal of the American Chemical Society, 1985, 107, 1790-1791.	13.7	12
108	Silicon-carbon unsaturated compounds. 20. Formation and reactions of disilacyclopropanes and molecular structure of 3-(hydroxydimesitylsilyl)-1,1-dimesityl-2,2-bis(trimethylsilyl)-1-silacyclopropane. Journal of the American Chemical Society, 1985, 107, 7706-7710.	13.7	53