Sabine Colnot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apc Tumor Suppressor Gene Is the "Zonation-Keeper―of Mouse Liver. Developmental Cell, 2006, 10, 759-770.	7.0	460
2	The <i>H19</i> locus acts <i>in vivo</i> as a tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12417-12422.	7.1	300
3	Liver-targeted disruption of <i>Apc</i> in mice activates β-catenin signaling and leads to hepatocellular carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17216-17221.	7.1	291
4	Crypt-restricted proliferation and commitment to the Paneth cell lineage following <i>Apc</i> loss in the mouse intestine. Development (Cambridge), 2005, 132, 1443-1451.	2.5	257
5	Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Laboratory Investigation, 2004, 84, 1619-1630.	3.7	167
6	Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. Journal of Clinical Investigation, 2012, 122, 586-599.	8.2	155
7	T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology, 2014, 59, 2344-2357.	7.3	137
8	Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology, 2008, 47, 247-258.	7.3	132
9	Identification of the IFITM Family as a New Molecular Marker in Human Colorectal Tumors. Cancer Research, 2006, 66, 1949-1955.	0.9	120
10	A genetic study of the role of the Wnt/β-catenin signalling in Paneth cell differentiation. Developmental Biology, 2008, 324, 288-296.	2.0	96
11	β-catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut, 2019, 68, 322-334.	12.1	94
12	Wnt/β-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncology, 2008, 4, 647-660.	2.4	83
13	Transcription dynamics in a physiological process: β-Catenin signaling directs liver metabolic zonation. International Journal of Biochemistry and Cell Biology, 2011, 43, 271-278.	2.8	82
14	Molecular Determinants of Liver Zonation. Progress in Molecular Biology and Translational Science, 2010, 97, 127-150.	1.7	81
15	cis-Acting Elements and Transcription Factors Involved in the Intestinal Specific Expression of the Rat Calbindin-D9k Gene. Binding of the Intestine-Specific Transcription Factor Cdx-2 to the TATA Box. FEBS Journal, 1996, 236, 778-788.	0.2	80
16	Proteomic analysis of β atenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics, 2009, 9, 3889-3900.	2.2	74
17	Intestinal Expression of the Calbindin-D9K Gene in Transgenic Mice. Journal of Biological Chemistry, 1998, 273, 31939-31946.	3.4	61
18	Antitumour activity of an inhibitor of miR-34a in liver cancer with β-catenin-mutations. Gut, 2016, 65, 1024-1034.	12.1	61

SABINE COLNOT

#	Article	IF	CITATIONS
19	Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles. Nucleic Acids Research, 2003, 31, 21e-21.	14.5	58
20	The transforming growth factor-α and cyclin D1 genes are direct targets of β-catenin signaling in hepatocyte proliferation. Journal of Hepatology, 2011, 55, 86-95.	3.7	54
21	APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. Journal of Cell Biology, 2015, 210, 717-726.	5.2	48
22	Liver Zonation. Molecular Pathology Library, 2011, , 7-16.	0.1	44
23	Identification of DNA sequences that bind retinoid X receptor-1,25(OH)2D3-receptor heterodimers with high affinity. Molecular and Cellular Endocrinology, 1995, 113, 89-98.	3.2	42
24	Expression of NKG2D ligands is downregulated by β-catenin signalling and associates with HCC aggressiveness. Journal of Hepatology, 2021, 74, 1386-1397.	3.7	37
25	Role of \hat{l}^2 -catenin in development of bile ducts. Differentiation, 2016, 91, 42-49.	1.9	34
26	Tissue-specific and Hormonal Regulation of Calbindin-D9K Fusion Genes in Transgenic Mice. Journal of Biological Chemistry, 1996, 271, 16820-16826.	3.4	33
27	The four and a half LIM-only protein 2 regulates liver homeostasis and contributes to carcinogenesis. Journal of Hepatology, 2012, 57, 1029-1036.	3.7	23
28	Hepatocellular Carcinomas With Mutational Activation of Beta-Catenin Require Choline and Can Be Detected by Positron Emission Tomography. Gastroenterology, 2019, 157, 807-822.	1.3	22
29	A Complex Interplay between Wnt/ <i>β</i> -Catenin Signalling and the Cell Cycle in the Adult Liver. International Journal of Hepatology, 2012, 2012, 1-7.	1.1	21
30	Calbindin-D9k gene expression in the uterus: study of the two messenger ribonucleic acid species and analysis of an imperfect estrogen- responsive element. Endocrinology, 1994, 134, 11-18.	2.8	21
31	Contrasting effects of tamoxifen and ICI 182 780 on estrogen-induced calbindin-D 9k gene expression in the uterus and in primary culture of myometrial cells. Journal of Steroid Biochemistry and Molecular Biology, 1995, 55, 1-7.	2.5	20
32	Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Archives of Toxicology, 2016, 90, 1481-1494.	4.2	19
33	Hippo/YAP, β-Catenin, and the Cancer Cell: A "Ménage à Trois―in Hepatoblastoma. Gastroenterology, 2014, 147, 562-565.	1.3	17
34	LKB1 and Notch Pathways Interact and Control Biliary Morphogenesis. PLoS ONE, 2015, 10, e0145400.	2.5	17
35	Deleting the β-catenin degradation domain in mouse hepatocytes drives hepatocellular carcinoma or hepatoblastoma-like tumor growth. Journal of Hepatology, 2022, 77, 424-435.	3.7	17
36	Generation of Mice with Hepatocyte-Specific Conditional Deletion of Notum. PLoS ONE, 2016, 11, e0150997.	2.5	15

SABINE COLNOT

#	Article	IF	CITATIONS
37	Coordinate regulation of Cyp2e1 by β-catenin- and hepatocyte nuclear factor 1α-dependent signaling. Toxicology, 2016, 350-352, 40-48.	4.2	14
38	Deficiency of the LIM-Only Protein FHL2 Reduces Intestinal Tumorigenesis in Apc Mutant Mice. PLoS ONE, 2010, 5, e10371.	2.5	14
39	Dual-specificity phosphatases are targets of the Wnt/β-catenin pathway and candidate mediators of β-catenin/Ras signaling interactions. Biological Chemistry, 2012, 393, 1183-1191.	2.5	13
40	ARID2 Chromatin Remodeler in Hepatocellular Carcinoma. Cells, 2020, 9, 2152.	4.1	12
41	MicroRNA-feedback loop as a key modulator of liver tumorigenesis and inflammation. World Journal of Gastroenterology, 2013, 19, 440.	3.3	10
42	Hepatocellular carcinoma diagnosis: Circulating microRNAs emerge as robust biomarkers. Clinics and Research in Hepatology and Gastroenterology, 2016, 40, 367-369.	1.5	9
43	Focusing on beta atenin activating mutations to refine liver tumor profiling. Hepatology, 2016, 64, 1850-1852.	7.3	8
44	Transgenic Analysis of the Response of the Rat Calbindin-D 9k Gene to Vitamin D. Endocrinology, 2000, 141, 2301-2308.	2.8	8
45	Control of nuclear transcription of vitamin D-dependent genes by vitamin D. Current Opinion in Nephrology and Hypertension, 1997, 6, 314-320.	2.0	6
46	Potentials of CRISPR in liver research and therapy. Clinics and Research in Hepatology and Gastroenterology, 2019, 43, 5-11.	1.5	6
47	Maternal obesity: A severe risk factor in hepatocarcinogenesis?. Journal of Hepatology, 2020, 73, 502-504.	3.7	4
48	The concomitant loss of <scp>APC</scp> and <scp>HNF</scp> 4α in adult hepatocytes does not contribute to hepatocarcinogenesis driven by βâ€catenin activation. Liver International, 2019, 39, 727-739.	3.9	3
49	MicroRNAs Linking Cancer and Inflammation: Focus on Liver Cancer. , 2014, , 183-208.		3
50	Functional and growth properties of a myometrial cell line derived from transgenic mice: effects of estradiol and antiestrogens. Endocrinology, 1996, 137, 2246-2253.	2.8	3
51	ARID1A loss in adult hepatocytes activates β-catenin-mediated erythropoietin transcription. ELife, 2020, 9, .	6.0	3
52	Editing liver tumours. Gut, 2014, 63, 709-710.	12.1	1
53	Proteomic analysis of beta-catenin activation in mouse liver identifies glucose metabolism as a new target of the Wnt pathway. European Journal of Cancer, Supplement, 2008, 6, 49.	2.2	0
54	220 ANALYSIS OF GENES DIFFERENTIALLY REGULATED BY REPTIN AND PONTIN IN HUMAN HEPATOCELLULAR CARCINOMA CELLS. Journal of Hepatology, 2011, 54, S92.	3.7	0

SABINE COLNOT

#	ARTICLE	IF	CITATIONS
55	1046 miR-34a & beta-CATENIN SIGNALING IN MOUSE LIVER: A COMPLEX NETWORK REGULATING LIVER ZONATION, METABOLISM AND CANCER. Journal of Hepatology, 2013, 58, S429-S430.	3.7	0
56	P0263 : Consequences of \hat{l}^2 -catenin pathway activation on mouse hepatic metabolism. Journal of Hepatology, 2015, 62, S405.	3.7	0
57	Beta-catenin-dependent erythropoiesis in adult mice deficient in hepatic ARID1A chromatin remodeler. Journal of Hepatology, 2018, 68, S47-S48.	3.7	0
58	Upregulation of the imprinted DLK1/DIO3 locus in response to beta-catenin activation: a promising target for HCC treatment. Journal of Hepatology, 2018, 68, S94-S95.	3.7	0