
Wendy Barclay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infectious Diseases, The, 2022, 22, 183-195.	9.1	585
2	SARS-CoV-2 environmental contamination from hospitalised patients with COVID-19 receiving aerosol-generating procedures. Thorax, 2022, 77, 259-267.	5.6	34
3	SARS-CoV-2 infection and vaccine effectiveness in England (REACT-1): a series of cross-sectional random community surveys. Lancet Respiratory Medicine,the, 2022, 10, 355-366.	10.7	39
4	SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185, 467-484.e15.	28.9	788
5	Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Reports, 2022, 38, 110344.	6.4	46
6	Multisystem screening reveals <scp>SARSâ€CoV</scp> â€2 in neurons of the myenteric plexus and in megakaryocytes. Journal of Pathology, 2022, 257, 198-217.	4.5	16
7	A common TMPRSS2 variant has a protective effect against severe COVID-19. Current Research in Translational Medicine, 2022, 70, 103333.	1.8	30
8	Rapid increase in Omicron infections in England during December 2021: REACT-1 study. Science, 2022, 375, 1406-1411.	12.6	99
9	Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 40-49.	14.5	145
10	NaÃ ⁻ ve Human Macrophages Are Refractory to SARS-CoV-2 Infection and Exhibit a Modest Inflammatory Response Early in Infection. Viruses, 2022, 14, 441.	3.3	10
11	Population antibody responses following COVID-19 vaccination in 212,102 individuals. Nature Communications, 2022, 13, 907.	12.8	94
12	Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nature Medicine, 2022, 28, 1031-1041.	30.7	281
13	Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium. Nature Communications, 2022, 13, 1609.	12.8	24
14	The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.	6.1	23
15	A self-amplifying RNA vaccine protects against SARS-CoV-2 (D614G) and Alpha variant of concern (B.1.1.7) in a transmission-challenge hamster model. Vaccine, 2022, 40, 2848-2855.	3.8	7
16	SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2 receptor host ranges. Journal of General Virology, 2022, 103, .	2.9	19
17	Potent Virustatic Polymer–Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo. ACS Central Science, 2022, 8, 1238-1257.	11.3	9
18	Breakthrough SARS-CoV-2 infections in double and triple vaccinated adults and single dose vaccine effectiveness among children in Autumn 2021 in England: REACT-1 study. EClinicalMedicine, 2022, 48, 101419.	7.1	8

#	Article	IF	CITATIONS
19	Twin peaks: The Omicron SARS-CoV-2 BA.1 and BA.2 epidemics in England. Science, 2022, 376, .	12.6	78
20	An early warning system for emerging SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1110-1115.	30.7	47
21	Appropriately smoothing prevalence data to inform estimates of growth rate and reproduction number. Epidemics, 2022, 40, 100604.	3.0	15
22	Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets. Oxford Open Immunology, 2022, 3, .	2.8	2
23	Robustness of the Ferret Model for Influenza Risk Assessment Studies: a Cross-Laboratory Exercise. MBio, 2022, 13, .	4.1	12
24	Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies. Communications Medicine, 2022, 2, .	4.2	13
25	Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nature Microbiology, 2022, 7, 1180-1188.	13.3	39
26	Investigating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Surface and Air Contamination in an Acute Healthcare Setting During the Peak of the Coronavirus Disease 2019 (COVID-19) Pandemic in London. Clinical Infectious Diseases, 2021, 73, e1870-e1877.	5.8	227
27	Usability and Acceptability of Home-based Self-testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibodies for Population Surveillance. Clinical Infectious Diseases, 2021, 72, e384-e393.	5.8	55
28	SARS-CoV-2 antibody prevalence in England following the first peak of the pandemic. Nature Communications, 2021, 12, 905.	12.8	168
29	SARS-CoV-2 lateral flow assays for possible use in national covid-19 seroprevalence surveys (React 2): diagnostic accuracy study. BMJ, The, 2021, 372, n423.	6.0	56
30	Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. Lancet, The, 2021, 397, 1178-1181.	13.7	279
31	The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology, 2021, 6, 899-909.	13.3	556
32	Resurgence of SARS-CoV-2: Detection by community viral surveillance. Science, 2021, 372, 990-995.	12.6	91
33	Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature, 2021, 594, 88-93.	27.8	293
34	SARS-CoV-2 one year on: evidence for ongoing viral adaptation. Journal of General Virology, 2021, 102, .	2.9	137
35	Prevalence of antibody positivity to SARS-CoV-2 following the first peak of infection in England: Serial cross-sectional studies of 365,000 adults. Lancet Regional Health - Europe, The, 2021, 4, 100098.	5.6	91
36	Evaluating the fitness of PA/I38T-substituted influenza A viruses with reduced baloxavir susceptibility in a competitive mixtures ferret model. PLoS Pathogens, 2021, 17, e1009527.	4.7	23

#	Article	IF	CITATIONS
37	Favipiravir-resistant influenza A virus shows potential for transmission. PLoS Pathogens, 2021, 17, e1008937.	4.7	23
38	Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet, The, 2021, 398, 223-237.	13.7	110
39	The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nature Communications, 2021, 12, 4068.	12.8	57
40	2020 Hindsight: Should evolutionary virologists have expected the unexpected during a pandemic?. Evolution; International Journal of Organic Evolution, 2021, 75, 2311-2316.	2.3	6
41	Inactivation of SARS-CoV-2 in chlorinated swimming pool water. Water Research, 2021, 205, 117718.	11.3	17
42	A natural variant in ANP32B impairs influenza virus replication in human cells. Journal of General Virology, 2021, 102, .	2.9	8
43	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	28.9	330
44	SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599, 114-119.	27.8	1,041
45	A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374, eabj3624.	12.6	124
46	Handheld Point-of-Care System for Rapid Detection of SARS-CoV-2 Extracted RNA in under 20 min. ACS Central Science, 2021, 7, 307-317.	11.3	106
47	Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038307.	6.2	14
48	Acceptability, Usability, and Performance of Lateral Flow Immunoassay Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies: REACT-2 Study of Self-Testing in Nonhealthcare Key Workers. Open Forum Infectious Diseases, 2021, 8, ofab496.	0.9	12
49	Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.	12.6	111
50	Amino acid substitutions in the H5N1 avian influenza haemagglutinin alter pH of fusion and receptor binding to promote a highly pathogenic phenotype in chickens. Journal of General Virology, 2021, 102, .	2.9	2
51	Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathogens, 2021, 17, e1010022.	4.7	139
52	Ultrastructure of cell trafficking pathways and coronavirus: how to recognise the wolf amongst the sheep. Journal of Pathology, 2020, 252, 346-357.	4.5	13
53	Host ANP32A mediates the assembly of the influenza virus replicase. Nature, 2020, 587, 638-643.	27.8	89
54	Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax, 2020, 75, 1082-1088.	5.6	133

Wendy Barclay

#	Article	IF	CITATIONS
55	Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathogens, 2020, 16, e1008716.	4.7	9
56	Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study. Lancet Microbe, The, 2020, 1, e300-e307.	7.3	92
57	The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses, 2020, 12, 920.	3.3	10
58	Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe, The, 2020, 1, e245-e253.	7.3	441
59	Quantifying mechanistic traits of influenza viral dynamics using in vitro data. Epidemics, 2020, 33, 100406.	3.0	10
60	ACE2: The Only Thing That Matters?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 161-163.	5.6	4
61	Population implications of the deployment of novel universal vaccines against epidemic and pandemic influenza. Journal of the Royal Society Interface, 2020, 17, 20190879.	3.4	12
62	Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications, 2020, 11, 3523.	12.8	357
63	Characterising viable virus from air exhaled by H1N1 influenza-infected ferrets reveals the importance of haemagglutinin stability for airborne infectivity. PLoS Pathogens, 2020, 16, e1008362.	4.7	25
64	Swine ANP32A Supports Avian Influenza Virus Polymerase. Journal of Virology, 2020, 94, .	3.4	26
65	Elucidating the Interactions between Influenza Virus Polymerase and Host Factor ANP32A. Journal of Virology, 2020, 94, .	3.4	29
66	Baloxavir treatment of ferrets infected with influenza A(H1N1)pdm09 virus reduces onward transmission. PLoS Pathogens, 2020, 16, e1008395.	4.7	28
67	REal-time Assessment of Community Transmission (REACT) of SARS-CoV-2 virus: Study protocol. Wellcome Open Research, 2020, 5, 200.	1.8	55
68	Passage of influenza A/H3N2 viruses in human airway cells removes artefactual variants associated with neuraminidase-mediated binding. Journal of General Virology, 2020, 101, 456-466.	2.9	9
69	The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. Journal of General Virology, 2020, 101, 791-797.	2.9	300
70	REal-time Assessment of Community Transmission (REACT) of SARS-CoV-2 virus: Study protocol. Wellcome Open Research, 2020, 5, 200.	1.8	93
71	Title is missing!. , 2020, 16, e1008395.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2020, 16, e1008395.		0
74	Title is missing!. , 2020, 16, e1008395.		0
75	Title is missing!. , 2020, 16, e1008716.		0
76	Title is missing!. , 2020, 16, e1008716.		0
77	Title is missing!. , 2020, 16, e1008716.		0
78	Title is missing!. , 2020, 16, e1008716.		0
79	Title is missing!. , 2020, 16, e1008716.		0
80	Title is missing!. , 2020, 16, e1008716.		0
81	Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nature Microbiology, 2019, 4, 2035-2038.	13.3	35
82	Host Determinants of Influenza RNA Synthesis. Annual Review of Virology, 2019, 6, 215-233.	6.7	39
83	Receptor for bat influenza virus uncovers potential risk to humans. Nature, 2019, 567, 35-36.	27.8	6
84	Pregnancy-related immune suppression leads to altered influenza vaccine recall responses. Clinical Immunology, 2019, 208, 108254.	3.2	8
85	ANP32 Proteins Are Essential for Influenza Virus Replication in Human Cells. Journal of Virology, 2019, 93, .	3.4	68
86	Effect of a Russian-backbone live-attenuated influenza vaccine with an updated pandemic H1N1 strain on shedding and immunogenicity among children in The Gambia: an open-label, observational, phase 4 study. Lancet Respiratory Medicine,the, 2019, 7, 665-676.	10.7	34
87	Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Research, 2019, 168, 187-196.	4.1	21
88	Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. Journal of Virology, 2019, 93, .	3.4	25
89	RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathogens, 2019, 15, e1007601.	4.7	26
90	Host and viral determinants of influenza A virus species specificity. Nature Reviews Microbiology, 2019, 17, 67-81.	28.6	390

#	Article	IF	CITATIONS
91	Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing. Journal of Virology, 2019, 93, .	3.4	42
92	Species specific differences in use of ANP32 proteins by influenza A virus. ELife, 2019, 8, .	6.0	68
93	Urgent challenges in implementing live attenuated influenza vaccine. Lancet Infectious Diseases, The, 2018, 18, e25-e32.	9.1	46
94	The mechanism of resistance to favipiravir in influenza. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11613-11618.	7.1	243
95	Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerging Infectious Diseases, 2018, 24, 965-971.	4.3	56
96	Mouse Models of Influenza Infection with Circulating Strains to Test Seasonal Vaccine Efficacy. Frontiers in Immunology, 2018, 9, 126.	4.8	46
97	Assays to Measure the Activity of Influenza Virus Polymerase. Methods in Molecular Biology, 2018, 1836, 343-374.	0.9	26
98	Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. PLoS Pathogens, 2018, 14, e1006821.	4.7	32
99	Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness <i>In Vivo</i> and Display Enhanced Zoonotic Characteristics. Journal of Virology, 2017, 91, .	3.4	41
100	Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	46
101	Can defective interfering RNAs affect the live attenuated influenza vaccine? – Authors' reply. Lancet Infectious Diseases, The, 2017, 17, 1235-1236.	9.1	3
102	M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza. JCI Insight, 2017, 2, e91868.	5.0	59
103	Antiviral Screening of Multiple Compounds against Ebola Virus. Viruses, 2016, 8, 277.	3.3	37
104	Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biology, 2016, 13, 883-894.	3.1	36
105	Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance. Scientific Reports, 2016, 6, 29793.	3.3	53
106	Knowns and unknowns of influenza B viruses. Future Microbiology, 2016, 11, 119-135.	2.0	88
107	Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature, 2016, 529, 101-104.	27.8	228
108	NB protein does not affect influenza B virus replication in vitro and is not required for replication in or transmission between ferrets. Journal of General Virology, 2016, 97, 593-601.	2.9	13

7

#	Article	IF	CITATIONS
109	An engineered avian-origin influenza A virus for pancreatic ductal adenocarcinoma virotherapy. Journal of General Virology, 2016, 97, 2166-2179.	2.9	9
110	Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window. Journal of General Virology, 2016, 97, 2516-2527.	2.9	42
111	Viral factors in influenza pandemic risk assessment. ELife, 2016, 5, .	6.0	82
112	The Functional Study of the N-Terminal Region of Influenza B Virus Nucleoprotein. PLoS ONE, 2015, 10, e0137802.	2.5	9
113	Oneâ€way trip: Influenza virus' adaptation to gallinaceous poultry may limit its pandemic potential. BioEssays, 2015, 37, 204-212.	2.5	28
114	Amino acid substitution D222N from fatal influenza infection affects receptor-binding properties of the influenza A(H1N1)pdm09 virus. Virology, 2015, 484, 15-21.	2.4	10
115	Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus. Journal of General Virology, 2015, 96, 2092-2098.	2.9	5
116	Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Research, 2015, 4, 30.	1.6	57
117	Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Research, 2015, 4, 30.	1.6	63
118	Low Dose Influenza Virus Challenge in the Ferret Leads to Increased Virus Shedding and Greater Sensitivity to Oseltamivir. PLoS ONE, 2014, 9, e94090.	2.5	43
119	Viral determinants of influenza A virus host range. Journal of General Virology, 2014, 95, 1193-1210.	2.9	132
120	Transfer of the Amino-Terminal Nuclear Envelope Targeting Domain of Human MX2 Converts MX1 into an HIV-1 Resistance Factor. Journal of Virology, 2014, 88, 9017-9026.	3.4	87
121	Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunology, 2014, 7, 89-100.	6.0	19
122	Clycomic Characterization of Respiratory Tract Tissues of Ferrets. Journal of Biological Chemistry, 2014, 289, 28489-28504.	3.4	82
123	Accumulation of Human-Adapting Mutations during Circulation of A(H1N1)pdm09 Influenza Virus in Humans in the United Kingdom. Journal of Virology, 2014, 88, 13269-13283.	3.4	84
124	The Effect of the PB2 Mutation 627K on Highly Pathogenic H5N1 Avian Influenza Virus Is Dependent on the Virus Lineage. Journal of Virology, 2013, 87, 9983-9996.	3.4	56
125	Cellular immune correlates of protection against symptomatic pandemic influenza. Nature Medicine, 2013, 19, 1305-1312.	30.7	757
126	Investigation of Influenza Virus Polymerase Activity in Pig Cells. Journal of Virology, 2013, 87, 384-394.	3.4	46

#	Article	IF	CITATIONS
127	Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. Journal of General Virology, 2013, 94, 1220-1229.	2.9	58
128	Transmission Studies Resume for Avian Flu. Science, 2013, 339, 520-521.	12.6	34
129	Unstable Polymerase-Nucleoprotein Interaction Is Not Responsible for Avian Influenza Virus Polymerase Restriction in Human Cells. Journal of Virology, 2013, 87, 1278-1284.	3.4	41
130	The Short Stalk Length of Highly Pathogenic Avian Influenza H5N1 Virus Neuraminidase Limits Transmission of Pandemic H1N1 Virus in Ferrets. Journal of Virology, 2013, 87, 10539-10551.	3.4	72
131	Pause on Avian Flu Transmission Research. Science, 2012, 335, 400-401.	12.6	58
132	Transmission of a 2009 H1N1 Pandemic Influenza Virus Occurs before Fever Is Detected, in the Ferret Model. PLoS ONE, 2012, 7, e43303.	2.5	44
133	Influenza Pandemics. Advances in Experimental Medicine and Biology, 2012, 719, 81-103.	1.6	16
134	An influenza reassortant with polymerase of pH1N1 and NS gene of H3N2 influenza A virus is attenuated in vivo. Journal of General Virology, 2012, 93, 998-1006.	2.9	20
135	Adjuvant-Free Immunization with Hemagglutinin-Fc Fusion Proteins as an Approach to Influenza Vaccines. Journal of Virology, 2011, 85, 3010-3014.	3.4	47
136	Receptor Binding Profiles of Avian Influenza Virus Hemagglutinin Subtypes on Human Cells as a Predictor of Pandemic Potential. Journal of Virology, 2011, 85, 1875-1880.	3.4	46
137	Pandemic H1N1 2009 influenza virus with the H275Y oseltamivir resistance neuraminidase mutation shows a small compromise in enzyme activity and viral fitness. Journal of Antimicrobial Chemotherapy, 2011, 66, 466-470.	3.0	61
138	Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo. Journal of General Virology, 2011, 92, 1822-1831.	2.9	45
139	A Single Amino Acid in the HA of pH1N1 2009 Influenza Virus Affects Cell Tropism in Human Airway Epithelium, but Not Transmission in Ferrets. PLoS ONE, 2011, 6, e25755.	2.5	28
140	Evidence for Avian and Human Host Cell Factors That Affect the Activity of Influenza Virus Polymerase. Journal of Virology, 2010, 84, 9978-9986.	3.4	88
141	RIG-I Detects Viral Genomic RNA during Negative-Strand RNA Virus Infection. Cell, 2010, 140, 397-408.	28.9	508
142	Rapid generation of a well-matched vaccine seed from a modern influenza A virus primary isolate without recourse to eggs. Vaccine, 2010, 28, 2973-2979.	3.8	9
143	Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways. PLoS Pathogens, 2009, 5, e1000424.	4.7	68
144	A phase I clinical trial of a PER.C6® cell grown influenza H7 virus vaccine. Vaccine, 2009, 27, 1889-1897.	3.8	136

#	Article	IF	CITATIONS
145	A Complicated Message: Identification of a Novel PB1-Related Protein Translated from Influenza A Virus Segment 2 mRNA. Journal of Virology, 2009, 83, 8021-8031.	3.4	318
146	Mutations in H5N1 Influenza Virus Hemagglutinin that Confer Binding to Human Tracheal Airway Epithelium. PLoS ONE, 2009, 4, e7836.	2.5	60
147	The Development of a Reverse Genetics System Enabling the Rescue of Recombinant Avian Influenza Virus, A/turkey/england/50-92/91 (H5N1). Avian Diseases Digest, 2007, 2, e46-e46.	0.0	2
148	NS1 Proteins of Avian Influenza A Viruses Can Act as Antagonists of the Human Alpha/Beta Interferon Response. Journal of Virology, 2007, 81, 2318-2327.	3.4	72
149	Development of a Reverse Genetics System Enabling theRescue of Recombinant Avian Influenza Virus A/Turkey/England/50-92/91 (H5N1). Avian Diseases, 2007, 51, 393-395.	1.0	19
150	Alterations in Receptor Binding Properties of Recent Human Influenza H3N2 Viruses Are Associated with Reduced Natural Killer Cell Lysis of Infected Cells. Journal of Virology, 2007, 81, 11170-11178.	3.4	52
151	Probing the receptor interactions of an H5 avian influenza virus using a baculovirus expression system and functionalised poly(acrylic acid) ligands. Bioorganic and Medicinal Chemistry, 2007, 15, 4038-4047.	3.0	13
152	Generation of candidate human influenza vaccine strains in cell culture – rehearsing the European response to an H7N1 pandemic threat. Influenza and Other Respiratory Viruses, 2007, 1, 157-166.	3.4	28
153	Infection of Human Airway Epithelium by Human and Avian Strains of Influenza A Virus. Journal of Virology, 2006, 80, 8060-8068.	3.4	224
154	Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. Journal of Antimicrobial Chemotherapy, 2004, 53, 759-765.	3.0	42
155	Pandemic risks from bird flu. BMJ: British Medical Journal, 2004, 328, 238-239.	2.3	15
156	Restrictions to the Adaptation of Influenza A Virus H5 Hemagglutinin to the Human Host. Journal of Virology, 2004, 78, 502-507.	3.4	61
157	The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology, 2004, 321, 144-153.	2.4	143
158	Attenuating mutations in the influenza virus genome which may increase the safety of vaccine production. International Congress Series, 2004, 1263, 687-690.	0.2	0
159	A Reverse Genetics Approach for Recovery of Recombinant Influenza B Viruses Entirely from cDNA. Journal of Virology, 2002, 76, 11744-11747.	3.4	67
160	The time course of the humoral immune response to rhinovirus infection. Epidemiology and Infection, 1989, 103, 659-669.	2.1	85
161	A Common <i>TMPRSS2</i> Variant Protects Against Severe COVID-19. SSRN Electronic Journal, 0, , .	0.4	2
162	Behavioural responses to SARS-CoV-2 antibody testing in England: REACT-2 study. Wellcome Open Research, 0, 6, 203.	1.8	0

#	Article	IF	CITATIONS
163	Behavioural responses to SARS-CoV-2 antibody testing in England: REACT-2 study. Wellcome Open Research, 0, 6, 203.	1.8	0
164	Characterising the persistence of RT-PCR positivity and incidence in a community survey of SARS-CoV-2. Wellcome Open Research, 0, 7, 102.	1.8	7
165	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow assay for antibody prevalence studies following vaccination: a diagnostic accuracy study. Wellcome Open Research, 0, 6, 358.	1.8	5
166	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow assay for antibody prevalence studies following vaccination: a diagnostic accuracy study. Wellcome Open Research, 0, 6, 358.	1.8	2