Ye-Tao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286012/publications.pdf Version: 2024-02-01

		81900	106344
112	4,969	39	65
papers	citations	h-index	g-index
113	113	113	4441
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The acid dissolution characteristics of cadmium fixed by a novel Ca-Fe-Si composite material. Journal of Environmental Sciences, 2023, 127, 328-335.	6.1	0
2	Responses of ramie (Boehmeria nivea L.) to increasing rare earth element (REE) concentrations in a hydroponic system. Journal of Rare Earths, 2022, 40, 840-846.	4.8	9
3	Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China. Environmental Microbiology, 2022, 24, 919-937.	3.8	18
4	An energy-saving and environment-friendly technology for debromination of plastic waste: Novel models of heat transfer and movement behavior of bromine. Journal of Hazardous Materials, 2022, 421, 126814.	12.4	11
5	Roles of soluble minerals in Cd sorption onto rice straw biochar. Journal of Environmental Sciences, 2022, 113, 64-71.	6.1	9
6	Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. Journal of Hazardous Materials, 2022, 424, 127233.	12.4	95
7	The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Science of the Total Environment, 2022, 805, 150335.	8.0	17
8	Biogeochemical cycles of nutrients, rare earth elements (REEs) and Al in soil-plant system in ion-adsorption REE mine tailings remediated with amendment and ramie (Boehmeria nivea L.). Science of the Total Environment, 2022, 809, 152075.	8.0	12
9	Enrichment and speciation of chromium during basalt weathering: Insights from variably weathered profiles in the Leizhou Peninsula, South China. Science of the Total Environment, 2022, 822, 153304.	8.0	20
10	Capturing approach for the toxic bromides generated in low-temperature pyrolysis of brominated resin. Journal of Cleaner Production, 2022, 346, 131174.	9.3	3
11	Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China. Science of the Total Environment, 2022, 828, 154361.	8.0	17
12	Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides. Journal of Hazardous Materials, 2022, 433, 128805.	12.4	33
13	Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment. Sustainability, 2022, 14, 429.	3.2	7
14	Effects of in situ leaching on the origin and migration of rare earth elements in aqueous systems of South China: Insights based on REE patterns, and Ce and Eu anomalies. Journal of Hazardous Materials, 2022, 435, 128959.	12.4	12
15	Visualizing and assessing the size-dependent oral uptake, tissue distribution, and detrimental effect of polystyrene microplastics in Eisenia fetida. Environmental Pollution, 2022, 306, 119436.	7.5	11
16	Dynamic release and transformation of metallic copper colloids in flooded paddy soil: Role of soil reducible sulfate and temperature. Journal of Hazardous Materials, 2021, 402, 123462.	12.4	8
17	Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. Journal of Hazardous Materials, 2021, 404, 124162.	12.4	63
18	Biological aqua crust mitigates metal(loid) pollution and the underlying immobilization mechanisms. Water Research, 2021, 190, 116736.	11.3	17

#	Article	IF	CITATIONS
19	Transformation behaviors and environmental risk assessment of heavy metals during resource recovery from Sedum plumbizincicola via hydrothermal liquefaction. Journal of Hazardous Materials, 2021, 410, 124588.	12.4	26
20	Variation in rare earth element (REE), aluminium (Al) and silicon (Si) accumulation among populations of the hyperaccumulator Dicranopteris linearis in southern China. Plant and Soil, 2021, 461, 565-578.	3.7	18
21	Rare earth elements, aluminium and silicon distribution in the fern <i>Dicranopteris linearis</i> revealed by μPIXE Maia analysis. Annals of Botany, 2021, 128, 17-30.	2.9	12
22	Quantification of nickel and cobalt mobility and accumulation via the phloem in the hyperaccumulator <i>Noccaea caerulescens</i> (Brassicaceae). Metallomics, 2021, 13, .	2.4	3
23	Industrial Ramie Growing on Reclaimed Ion-Adsorption Rare Earth Elements Mine Tailings in Southern China: Defibration and Fibers Quality. Waste and Biomass Valorization, 2021, 12, 6255-6260.	3.4	5
24	Phenomic and metabolomic responses of roots to cadmium reveal contrasting resistance strategies in two rice cultivars (Oryza sativa L.). Soil Ecology Letters, 2021, 3, 220-229.	4.5	16
25	Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. Planta, 2021, 254, 16.	3.2	6
26	Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming. Environmental Pollution, 2021, 279, 116862.	7.5	16
27	Selective Leaching of Rare Earth Elements from Ion-Adsorption Rare Earth Tailings: A Synergy between CeO ₂ Reduction and Fe/Mn Stabilization. Environmental Science & Technology, 2021, 55, 11328-11337.	10.0	22
28	Genome- and community-level interaction insights into the ecological role of archaea in rare earth element mine drainage in South China. Water Research, 2021, 201, 117331.	11.3	18
29	Dynamic interaction processes of rare earth metal mixtures in terrestrial organisms interpreted by toxicokinetic and toxicodynamic model. Journal of Hazardous Materials, 2021, 418, 126281.	12.4	11
30	Characterization of Neodymium Speciation in the Presence of Fulvic Acid by Ion Exchange Technique and Single Particle ICP-MS. Bulletin of Environmental Contamination and Toxicology, 2021, , 1.	2.7	1
31	Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere, 2021, 282, 131096.	8.2	30
32	Element Case Studies: Rare Earth Elements. Mineral Resource Reviews, 2021, , 471-483.	1.5	12
33	Plant-Soil Feedbacks for the Restoration of Degraded Mine Lands: A Review. Frontiers in Microbiology, 2021, 12, 751794.	3.5	17
34	Model-based rationalization of mixture toxicity and accumulation in Triticum aestivum upon concurrent exposure to yttrium, lanthanum, and cerium. Journal of Hazardous Materials, 2020, 389, 121940.	12.4	6
35	High trans-placental transfer of perfluoroalkyl substances alternatives in the matched maternal-cord blood serum: Evidence from a birth cohort study. Science of the Total Environment, 2020, 705, 135885.	8.0	74
36	Debromination and Decomposition Mechanisms of Phenolic Resin Molecules in Ball Milling with Nano-Zerovalent Iron. ACS Sustainable Chemistry and Engineering, 2020, 8, 172-178.	6.7	22

#	Article	IF	CITATIONS
37	Ecological influences of the migration of micro resin particles from crushed waste printed circuit boards on the dumping soil. Journal of Hazardous Materials, 2020, 386, 121020.	12.4	14
38	Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environment International, 2020, 134, 105340.	10.0	69
39	Reclamation with organic amendments and plants remodels the diversity and structure of bacterial community in ion-adsorption rare earth element mine tailings. Journal of Soils and Sediments, 2020, 20, 3669-3680.	3.0	14
40	Basis for a new process for producing REE oxides from Dicranopteris linearis. Journal of Environmental Chemical Engineering, 2020, 8, 103961.	6.7	18
41	Phytoextraction of rare earth elements from ion-adsorption mine tailings by Phytolacca americana: Effects of organic material and biochar amendment. Journal of Cleaner Production, 2020, 275, 122959.	9.3	32
42	Molecule co-fracture of organics in waste solar cells under different heating rates and the products analysis. Solar Energy Materials and Solar Cells, 2020, 214, 110573.	6.2	2
43	3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Applied Catalysis B: Environmental, 2020, 277, 119171.	20.2	260
44	Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials, 2020, 400, 123289.	12.4	176
45	Phytostabilization of Cd and Pb in Highly Polluted Farmland Soils Using Ramie and Amendments. International Journal of Environmental Research and Public Health, 2020, 17, 1661.	2.6	34
46	Mobility of metal(loid)s in Pb/Zn tailings under different revegetation strategies. Journal of Environmental Management, 2020, 263, 110323.	7.8	17
47	Co-transport and competitive retention of different ionic rare earth elements (REEs) in quartz sand: Effect of kaolinite. Science of the Total Environment, 2020, 722, 137779.	8.0	15
48	A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: Rationing the mass of CaCO3 to capture Br-containing substances in the pyrolysis of nonmetallic particles of waste printed circuit boards. Journal of Hazardous Materials, 2020, 393, 122410.	12.4	25
49	Do toxicokinetic and toxicodynamic processes hold the same for light and heavy rare earth elements in terrestrial organism Enchytraeus crypticus?. Environmental Pollution, 2020, 262, 114234.	7.5	16
50	The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. Journal of Hazardous Materials, 2020, 393, 122390.	12.4	13
51	Enhanced removal of aqueous Cd(II) by a biochar derived from salt-sealing pyrolysis coupled with NaOH treatment. Applied Surface Science, 2020, 511, 145619.	6.1	42
52	Recovery of the biological function of ethylenediaminetetraacetic acid-washed soils: Roles of environmental variations and microbes. Science of the Total Environment, 2020, 715, 137032.	8.0	16
53	Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern <i>Dicranopteris linearis</i> from China. Environmental Science & Technology, 2020, 54, 2287-2294.	10.0	31
54	Preparing cedrene from ethylene-vinyl acetate copolymer and polyethylene terephthalate of waste solar cells. Journal of Cleaner Production, 2020, 254, 120065.	9.3	8

#	Article	IF	CITATIONS
55	Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 2020, 717, 136894.	8.0	121
56	Interaction of Mn and Cd during their uptake in Celosia argentea differs between hydroponic and soil systems. Plant and Soil, 2020, 450, 323-336.	3.7	21
57	Cadmium stable isotope variation in a mountain area impacted by acid mine drainage. Science of the Total Environment, 2019, 646, 696-703.	8.0	56
58	Ecological Risk Assessment of Neodymium and Yttrium on Rare Earth Element Mine Sites in Ganzhou, China. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 565-570.	2.7	21
59	Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior. Waste Management, 2019, 100, 171-181.	7.4	107
60	Controls on rare-earth element transport in a river impacted by ion-adsorption rare-earth mining. Science of the Total Environment, 2019, 660, 697-704.	8.0	26
61	Heat evolution and energy analysis of cyanide bioproduction by a cyanogenic microorganism with the potential for bioleaching of precious metals. Journal of Hazardous Materials, 2019, 377, 284-289.	12.4	35
62	Directional concentration of bromine from nonmetallic particles of crushed waste printed circuit boards by vacuum-gasification-condensation. Journal of Cleaner Production, 2019, 231, 462-467.	9.3	24
63	A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. Journal of Cleaner Production, 2019, 229, 1148-1157.	9.3	77
64	Vacuum pyrolysis method for reclamation of rare earth elements fromÂhyperaccumulator Dicranopteris dichotoma grown in contaminated soil. Journal of Cleaner Production, 2019, 229, 480-488.	9.3	30
65	Simultaneous attenuation of phytoaccumulation of Cd and As in soil treated with inorganic and organic amendments. Environmental Pollution, 2019, 250, 464-474.	7.5	36
66	Co-deposition of silicon with rare earth elements (REEs) and aluminium in the fern Dicranopteris linearis from China. Plant and Soil, 2019, 437, 427-437.	3.7	26
67	Effects of the interactions between nickel and other trace metals on their accumulation in the hyperaccumulator Noccaea caerulescens. Environmental and Experimental Botany, 2019, 158, 73-79.	4.2	21
68	Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere, 2019, 216, 75-83.	8.2	114
69	A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards. Journal of Hazardous Materials, 2018, 353, 135-141.	12.4	60
70	Characterization of the Materials in Waste Power Banks and the Green Recovery Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 3815-3822.	6.7	36
71	Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant and Soil, 2018, 423, 1-11.	3.7	67
72	Accumulation and fractionation of rare earth elements (REEs) in the naturally grown <i>Phytolacca americana</i> L. in southern China. International Journal of Phytoremediation, 2018, 20, 415-423.	3.1	59

#	Article	IF	CITATIONS
73	Ecosystem services provided by heavy metal-contaminated soils in China. Journal of Soils and Sediments, 2018, 18, 380-390.	3.0	19
74	A novel pneumatic separator for separating diode and CD capacitance of waste printed circuit boards. Energy, 2018, 142, 191-195.	8.8	5
75	Element Case Studies: Rare Earth Elements. Mineral Resource Reviews, 2018, , 297-308.	1.5	26
76	Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. Environmental Science & Technology, 2018, 52, 11980-11994.	10.0	180
77	Elements in the Crystals Determine the Distribution of Bromine in Nonmetallic Particles of Crushed Waste Printed Circuit Boards. ACS Sustainable Chemistry and Engineering, 2018, 6, 13650-13655.	6.7	18
78	Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings. International Journal of Environmental Research and Public Health, 2018, 15, 494.	2.6	28
79	Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization. Chemosphere, 2017, 175, 275-285.	8.2	42
80	Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Scientific Reports, 2017, 7, 40583.	3.3	42
81	The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L Plant and Soil, 2017, 421, 67-82.	3.7	49
82	Study of the Process and Mechanism of the Remediation of Phenol Contaminated Soil by Plasma Vibrated Bed. Plasma Chemistry and Plasma Processing, 2017, 37, 1635-1653.	2.4	4
83	Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environmental Pollution, 2017, 231, 549-559.	7.5	68
84	Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant and Soil, 2017, 413, 203-216.	3.7	56
85	Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms. Environmental Geochemistry and Health, 2017, 39, 353-367.	3.4	44
86	Structure, Variation, and Co-occurrence of Soil Microbial Communities in Abandoned Sites of a Rare Earth Elements Mine. Environmental Science & Technology, 2016, 50, 11481-11490.	10.0	163
87	Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere, 2016, 164, 190-200.	8.2	49
88	Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant and Soil, 2016, 404, 35-45.	3.7	52
89	Zinc Isotope Fractionation in the Hyperaccumulator <i>Noccaea caerulescens</i> and the Nonaccumulating Plant <i>Thlaspi arvense</i> at Low and High Zn Supply. Environmental Science & Technology, 2016, 50, 8020-8027.	10.0	36
90	Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth and Planetary Science Letters, 2015, 423, 24-35.	4.4	76

#	Article	IF	CITATIONS
91	Spatial heterogeneity effects of Zn/Cd-contaminated soil on the removal efficiency by the hyperaccumulator Sedum alfredii. Journal of Soils and Sediments, 2014, 14, 948-954.	3.0	8
92	Cadmium–zinc exchange and their binary relationship in the structure of Zn-related proteins: a mini review. Metallomics, 2014, 6, 1313-1323.	2.4	70
93	Nickel and Zinc Isotope Fractionation in Hyperaccumulating and Nonaccumulating Plants. Environmental Science & Technology, 2014, 48, 11926-11933.	10.0	100
94	Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata. Plant Physiology and Biochemistry, 2013, 73, 70-76.	5.8	30
95	Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant Environmental and Experimental Botany, 2013, 87, 1-9.	4.2	19
96	Cellular Tolerance, Accumulation and Distribution of Cadmium in Leaves of Hyperaccumulator Picris divaricata. Pedosphere, 2012, 22, 497-507.	4.0	22
97	Fractionation of Stable Zinc Isotopes in the Field-Grown Zinc Hyperaccumulator Noccaea caerulescens and the Zinc-Tolerant Plant Silene vulgaris. Environmental Science & Technology, 2012, 46, 9972-9979.	10.0	45
98	Designing Cropping Systems for Metal-Contaminated Sites: A Review. Pedosphere, 2012, 22, 470-488.	4.0	97
99	Mechanisms of Cd Hyperaccumulation and Detoxification in Heavy Metal Hyperaccumulators: How Plants Cope with Cd. Progress in Botany Fortschritte Der Botanik, 2012, , 127-159.	0.3	4
100	Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant and Soil, 2012, 350, 193-204.	3.7	98
101	How Phytohormone Iaa and Chelator Edta Affect Lead Uptake by ZN/CD Hyperaccumulator <i>Picris Divaricata</i> . International Journal of Phytoremediation, 2011, 13, 1024-1036.	3.1	50
102	Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Environmental and Experimental Botany, 2011, 70, 227-232.	4.2	28
103	The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd. Chemosphere, 2011, 82, 321-328.	8.2	47
104	Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere, 2011, 83, 1234-1240.	8.2	256
105	Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. Journal of Hazardous Materials, 2011, 186, 1425-1430.	12.4	65
106	Root foraging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant and Soil, 2010, 327, 365-375.	3.7	60
107	Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 2010, 167, 81-87.	3.5	132
108	Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 2009, 66, 126-134.	4.2	184

#	Article	IF	CITATIONS
109	Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany, 2009, 66, 317-325.	4.2	111
110	Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F Chemosphere, 2008, 74, 6-12.	8.2	123
111	Zinc Hyperaccumulation and Uptake by <i>Potentilla Griffithii</i> Hook. International Journal of Phytoremediation, 2006, 8, 299-310.	3.1	38
112	Lead, zinc and cadmium accumulation in herbaceous species and soils in Lanping Pb/Zn mining area, Yunnan Province, China. Diqiu Huaxue, 2006, 25, 250-250.	0.5	4