
Alan Wai Hou Lio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4285409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamental performance similarities between individual pitch control strategies for wind turbines. International Journal of Control, 2017, 90, 37-52.	1.9	28
2	Real-time rotor effective wind speed estimation using Gaussian process regression and Kalman filtering. Renewable Energy, 2021, 169, 670-686.	8.9	27
3	Preview predictive control layer design based upon known wind turbine bladeâ€pitch controllers. Wind Energy, 2017, 20, 1207-1226.	4.2	23
4	Estimation and Control of Wind Turbine Tower Vibrations Based on Individual Blade-Pitch Strategies. IEEE Transactions on Control Systems Technology, 2019, 27, 1820-1828.	5.2	23
5	A review on applications of model predictive control to wind turbines. , 2014, , .		19
6	On wind turbine down-regulation control strategies and rotor speed set-point. Journal of Physics: Conference Series, 2018, 1037, 032040.	0.4	14
7	Overcoming fundamental limitations of wind turbine individual blade pitch control with inflow sensors. Wind Energy, 2018, 21, 922-936.	4.2	12
8	Active Power Dispatch for Supporting Grid Frequency Regulation in Wind Farms Considering Fatigue Load. Energies, 2019, 12, 1508.	3.1	11
9	DTUWEC: an open-source DTU Wind Energy Controller with advanced industrial features. Journal of Physics: Conference Series, 2020, 1618, 022009.	0.4	11
10	Active tip deflection control for wind turbines. Renewable Energy, 2020, 149, 445-454.	8.9	10
11	Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: Design, simulation and full-scale validation. Renewable Energy, 2021, 172, 1073-1086.	8.9	10
12	Blade-Pitch Control for Wind Turbine Load Reductions. Springer Theses, 2018, , .	0.1	9
13	Streaming dynamic mode decomposition for shortâ€ŧerm forecasting in wind farms. Wind Energy, 2022, 25, 719-734.	4.2	9
14	Surrogate Models for Wind Turbine Electrical Power and Fatigue Loads in Wind Farm. Energies, 2020, 13, 6360.	3.1	8
15	Model-free estimation of available power using deep learning. Wind Energy Science, 2021, 6, 111-129.	3.3	8
16	On turbulence models and lidar measurements for wind turbine control. Wind Energy Science, 2021, 6, 1491-1500.	3.3	8
17	Effective wind speed estimation for wind turbines in down-regulation. Journal of Physics: Conference Series, 2020, 1452, 012008.	0.4	7
18	Wake position tracking using dynamic wake meandering model and rotor loads. Journal of Renewable and Sustainable Energy, 2021, 13, 023301.	2.0	6

Alan Wai Hou Lio

#	Article	IF	CITATIONS
19	Optimised de-rated wind turbine response and loading through extended controller gain-scheduling. Journal of Physics: Conference Series, 2019, 1222, 012020.	0.4	5
20	The effect of minimum thrust coefficient control strategy on power output and loads of a wind farm. Journal of Physics: Conference Series, 2020, 1452, 012009.	0.4	5
21	Analysis and design of gain-scheduling blade-pitch controllers for wind turbine down-regulation*. , 2019, , .		4
22	Dynamic wake tracking and characteristics estimation using a cost-effective LiDAR. Journal of Physics: Conference Series, 2020, 1618, 032036.	0.4	4
23	Analysis and design of a tower motion estimator for wind turbines. , 2016, , .		3
24	Analysis and design of an adaptive turbulence-based controller for wind turbines. Renewable Energy, 2021, 178, 730-744.	8.9	3
25	Predictive control design on an embedded robust output-feedback compensator for wind turbine blade-pitch preview control. , 2016, , .		2
26	T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case. Energies, 2020, 13, 1306.	3.1	2
27	Kalman-based interacting multiple-model wind speed estimator for wind turbines. IFAC-PapersOnLine, 2020, 53, 12644-12649.	0.9	2
28	Computationally efficient model predictive control of complex wind turbine models. Wind Energy, 2022, 25, 735-746.	4.2	2
29	Modular Model Predictive Control upon an Existing Controller. Processes, 2020, 8, 855.	2.8	1
30	Preliminary assessment of yaw alignment on a single point moored downwind floating platform. Journal of Physics: Conference Series, 2021, 2018, 012043.	0.4	1
31	Background of Wind Turbine Blade-Pitch Load Reduction Control. Springer Theses, 2018, , 11-49.	0.1	1
32	Feed-Forward Model Predictive Control Layer on Wind Turbines. Springer Theses, 2018, , 147-170.	0.1	0
33	Feed-Forward Model Predictive Control Design Based upon a Feedback Controller. Springer Theses, 2018, , 125-145.	0.1	0
34	Performance Similarities Between Individual Pitch Control Strategies. Springer Theses, 2018, , 77-99.	0.1	0
35	Review of the Related Work. Springer Theses, 2018, , 51-75.	0.1	0
36	Estimation and Control Design for Tower Motions. Springer Theses, 2018, , 101-124.	0.1	0

#	Article	IF	CITATIONS
37	Turbulence-based load alleviation control for wind turbine in extreme turbulence situation. , 2021, , .		0