
## Frans A M Leermakers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/428453/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Colloidal particles interacting with a polymer brush: a self-consistent field theory. Physical<br>Chemistry Chemical Physics, 2022, 24, 8463-8476.                                                                               | 1.3 | 6         |
| 2  | Computer modeling of polymer stars in variable solvent conditions: a comparison of MD simulations,<br>self-consistent field (SCF) modeling and novel hybrid Monte Carlo SCF approach. Soft Matter, 2021, 17,<br>580-591.         | 1.2 | 3         |
| 3  | Bioflocculants from wastewater: Insights into adsorption affinity, flocculation mechanisms and mixed particle flocculation based on biopolymer size-fractionation. Journal of Colloid and Interface Science, 2021, 581, 533-544. | 5.0 | 27        |
| 4  | Effects of feed composition on the fouling on cation-exchange membranes desalinating polymer-flooding produced water. Journal of Colloid and Interface Science, 2021, 584, 634-646.                                              | 5.0 | 15        |
| 5  | Structural and mechanical parameters of lipid bilayer membranes using a lattice refined self-consistent field theory. Physical Chemistry Chemical Physics, 2021, 23, 5152-5175.                                                  | 1.3 | 4         |
| 6  | Theory of Microphase Segregation in ABA Triblock Comb-Shaped Copolymers: Lamellar Mesophase.<br>Macromolecules, 2021, 54, 4747-4759.                                                                                             | 2.2 | 5         |
| 7  | Self-consistent field modeling of mesomorphic phase changes of monoolein and phospholipids in response to additives. Physical Chemistry Chemical Physics, 2021, 23, 14093-14108.                                                 | 1.3 | 4         |
| 8  | (Homo)polymer-mediated colloidal stability of micellar solutions. Soft Matter, 2020, 16, 1560-1571.                                                                                                                              | 1.2 | 7         |
| 9  | Dendron Brushes in Polymer Medium: Interpenetration and Depletion. Macromolecules, 2020, 53, 387-397.                                                                                                                            | 2.2 | 4         |
| 10 | Virtual Special Issue in memory of Hans Lyklema (1930–2017). Advances in Colloid and Interface Science,<br>2020, 282, 102201.                                                                                                    | 7.0 | 0         |
| 11 | Step-wise linking of vesicles by combining reversible and irreversible linkers – towards total control on vesicle aggregate sizes. Soft Matter, 2020, 16, 6773-6783.                                                             | 1.2 | 2         |
| 12 | Self-Consistent Field Modeling of Pulling a Test-Chain away from or Pushing It into a Polymer<br>Adsorption Layer. Polymers, 2020, 12, 1684.                                                                                     | 2.0 | 2         |
| 13 | SCF Theory of Uniformly Charged Dendrimers: Impact of Asymmetry of Branching, Generation Number, and Salt Concentration. Macromolecules, 2020, 53, 7298-7311.                                                                    | 2.2 | 6         |
| 14 | Structure and Colloidal Stability of Adsorption Layers of Macrocycle, Linear, Comb, Star, and<br>Dendritic Macromolecules. Macromolecules, 2020, 53, 7322-7334.                                                                  | 2.2 | 5         |
| 15 | Long Tails with Flower-like Conformations Undergo an Escape Transition in Homopolymer Adsorption<br>Layers. Macromolecules, 2020, 53, 3900-3906.                                                                                 | 2.2 | 3         |
| 16 | Turning autophobic wetting on biomimetic surfaces into complete wetting by wetting additives. Soft<br>Matter, 2020, 16, 4823-4839.                                                                                               | 1.2 | 4         |
| 17 | The physics of microemulsions extracted from modeling balanced tensionless surfactant-loaded<br>liquid–liquid interfaces. Journal of Chemical Physics, 2020, 152, 094902.                                                        | 1.2 | 0         |
| 18 | Self-limiting aggregation of phospholipid vesicles. Soft Matter, 2020, 16, 2379-2389.                                                                                                                                            | 1.2 | 11        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Electroresponsive Polyelectrolyte Brushes Studied by Self-Consistent Field Theory. Polymers, 2020, 12, 898.                                                                                                         | 2.0 | 9         |
| 20 | Entropy estimates of a hard sphere system by data compression of Monte Carlo simulation data. Soft<br>Matter, 2020, 16, 3740-3745.                                                                                  | 1.2 | 2         |
| 21 | Plasticity in colloidal gel strands. Soft Matter, 2019, 15, 6447-6454.                                                                                                                                              | 1.2 | 12        |
| 22 | Influence of solution composition on fouling of anion exchange membranes desalinating polymer-flooding produced water. Journal of Colloid and Interface Science, 2019, 557, 381-394.                                | 5.0 | 34        |
| 23 | Temperature-Induced Re-Entrant Morphological Transitions in Block-Copolymer Micelles. Langmuir, 2019, 35, 2680-2691.                                                                                                | 1.6 | 9         |
| 24 | Coarseâ€Grained Dendrimers in a Good Solvent: Comparison of Monte Carlo Simulations,<br>Selfâ€Consistent Field Theory, and a Hybrid Modeling Strategy. Macromolecular Theory and<br>Simulations, 2019, 28, 1800064. | 0.6 | 2         |
| 25 | Elastic properties of symmetric liquid-liquid interfaces. Physical Review E, 2019, 100, 062801.                                                                                                                     | 0.8 | 1         |
| 26 | Non-linear elasticity effects and stratification in brushes of branched polyelectrolytes. Journal of<br>Chemical Physics, 2019, 151, 214902.                                                                        | 1.2 | 1         |
| 27 | Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes.<br>Physical Review E, 2018, 97, 032501.                                                                            | 0.8 | 2         |
| 28 | Impact of Macromolecular Architecture on Bending Rigidity of Dendronized Surfaces.<br>Macromolecules, 2018, 51, 3315-3329.                                                                                          | 2.2 | 4         |
| 29 | Behavior of Weak Polyelectrolyte Brushes in Mixed Salt Solutions. Macromolecules, 2018, 51, 1198-1206.                                                                                                              | 2.2 | 25        |
| 30 | Sign Switch of Gaussian Bending Modulus for Microemulsions: A Self-Consistent Field Analysis<br>Exploring Scale Invariant Curvature Energies. Physical Review Letters, 2018, 120, 028003.                           | 2.9 | 6         |
| 31 | Force and Scale Dependence of the Elasticity of Self-Assembled DNA Bottle Brushes. Macromolecules, 2018, 51, 204-212.                                                                                               | 2.2 | 12        |
| 32 | Self-Assembly of Lysine-Based Dendritic Surfactants Modeled by the Self-Consistent Field Approach.<br>Langmuir, 2018, 34, 1613-1626.                                                                                | 1.6 | 23        |
| 33 | One-step mild biorefinery of functional biomolecules from microalgae extracts. Reaction Chemistry and Engineering, 2018, 3, 182-187.                                                                                | 1.9 | 19        |
| 34 | Self-Consistent Field Modeling of Homopolymers at Interfaces in the Long Chain Length Limit. Polymer<br>Science - Series C, 2018, 60, 18-24.                                                                        | 0.8 | 3         |
| 35 | Self-Consistent Field Analysis of Molecular Bottle-Brushes with Primary and Secondary Side Chains:<br>Induced Persistence Length and Lateral Thickness. Polymer Science - Series C, 2018, 60, 160-171.              | 0.8 | 0         |
| 36 | A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of Telechelic Polymers. Journal of<br>Chemical Theory and Computation, 2018, 14, 6532-6543.                                                       | 2.3 | 6         |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory. Soft Matter, 2018, 14, 6230-6242.                                                      | 1.2 | 16        |
| 38 | Microphase Segregation of Diblock Copolymers Studied by the Self-Consistent Field Theory of<br>Scheutjens and Fleer. Polymers, 2018, 10, 78.                                                     | 2.0 | 8         |
| 39 | Dendron and Hyperbranched Polymer Brushes in Good and Poor Solvents. Langmuir, 2017, 33, 1315-1325.                                                                                              | 1.6 | 20        |
| 40 | Structure and lubrication of solvent-free dendron brushes. Polymer, 2017, 120, 223-235.                                                                                                          | 1.8 | 8         |
| 41 | Bending moduli of dendritic polymer brushes in a good solvent. Polymer Science - Series A, 2017, 59,<br>772-783.                                                                                 | 0.4 | 1         |
| 42 | Modeling of Polyelectrolyte Adsorption from Micellar Solutions onto Biomimetic Substrates.<br>Journal of Physical Chemistry B, 2017, 121, 8638-8651.                                             | 1.2 | 20        |
| 43 | Unfolding of a comb-like polymer in a poor solvent: translation of macromolecular architecture in the force–deformation spectra. Soft Matter, 2017, 13, 9147-9161.                               | 1.2 | 3         |
| 44 | Complex coacervates formed across liquid interfaces: A self-consistent field analysis. Advances in<br>Colloid and Interface Science, 2017, 239, 17-30.                                           | 7.0 | 5         |
| 45 | Interaction forces and lubrication of dendronized surfaces. Current Opinion in Colloid and Interface Science, 2017, 27, 50-56.                                                                   | 3.4 | 15        |
| 46 | Three-gradient regular solution model for simple liquids wetting complex surface topologies.<br>Beilstein Journal of Nanotechnology, 2016, 7, 1377-1396.                                         | 1.5 | 1         |
| 47 | Loss of bottlebrush stiffness due to free polymers. Soft Matter, 2016, 12, 8004-8014.                                                                                                            | 1.2 | 9         |
| 48 | Self-Organization of Polyurethane Pre-Polymers as Studied by Self-Consistent Field Theory.<br>Macromolecular Theory and Simulations, 2016, 25, 16-27.                                            | 0.6 | 13        |
| 49 | Design of block-copolymer-based micelles for active and passive targeting. Physical Review E, 2016, 94, 042503.                                                                                  | 0.8 | 4         |
| 50 | Enhanced stiffness of silkâ€like fibers by loop formation in the corona leads to stronger gels.<br>Biopolymers, 2016, 105, 795-801.                                                              | 1.2 | 1         |
| 51 | Brushes of Cycled Macromolecules: Structure and Lubricating Properties. Macromolecules, 2016, 49, 8758-8767.                                                                                     | 2.2 | 27        |
| 52 | Theory of Brushes Formed by Î∵Shaped Macromolecules at Solid–Liquid Interfaces. Langmuir, 2015, 31,<br>6514-6522.                                                                                | 1.6 | 29        |
| 53 | Interactions between nodes in a physical gel network of telechelic polymers; self-consistent field calculations beyond the cell model. Physical Chemistry Chemical Physics, 2015, 17, 9001-9014. | 1.3 | 10        |
| 54 | Liquid Crystals of Self-Assembled DNA Bottlebrushes. Journal of Physical Chemistry B, 2015, 119,<br>4084-4092.                                                                                   | 1.2 | 21        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Self-Assembled Structures of PMAA–PMMA Block Copolymers: Synthesis, Characterization, and Self-Consistent Field Computations. Macromolecules, 2015, 48, 1194-1203.                     | 2.2 | 18        |
| 56 | On the edge energy of lipid membranes and the thermodynamic stability of pores. Journal of Chemical Physics, 2015, 142, 034101.                                                        | 1.2 | 17        |
| 57 | Surfactant–polymer interactions: molecular architecture does matter. Soft Matter, 2015, 11, 2504-2511.                                                                                 | 1.2 | 37        |
| 58 | Structure of Multiresponsive Brush-Decorated Nanoparticles: A Combined Electrokinetic, DLS, and SANS Study. Langmuir, 2015, 31, 4779-4790.                                             | 1.6 | 31        |
| 59 | Structure of Mixed Brushes Made of Arm-Grafted Polymer Stars and Linear Chains. Macromolecules, 2015, 48, 2263-2276.                                                                   | 2.2 | 18        |
| 60 | Ideal Mixing in Multicomponent Brushes of Branched Polymers. Macromolecules, 2015, 48, 8025-8035.                                                                                      | 2.2 | 26        |
| 61 | Responsive polymer brushes for controlled nanoparticle exposure. Nanoscale, 2015, 7, 17871-17878.                                                                                      | 2.8 | 17        |
| 62 | Reentrant Stabilization of Grafted Nanoparticles in Polymer Solutions. Journal of Physical Chemistry<br>B, 2015, 119, 12938-12946.                                                     | 1.2 | 3         |
| 63 | Persistence length of dendronized polymers: the self-consistent field theory. Soft Matter, 2015, 11, 9367-9378.                                                                        | 1.2 | 22        |
| 64 | Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.<br>Journal of Chemical Physics, 2014, 140, 065102.                                | 1.2 | 19        |
| 65 | Ultrastrong Anchoring Yet Barrierâ€Free Adsorption of Composite Microgels at Liquid Interfaces.<br>Advanced Materials Interfaces, 2014, 1, 1300121.                                    | 1.9 | 54        |
| 66 | Dendron brushes and dendronized polymers: a theoretical outlook. Soft Matter, 2014, 10, 2093-2101.                                                                                     | 1.2 | 51        |
| 67 | Interaction of a Hydrophobic Weak Polyelectrolyte Star with an Apolar Surface. Langmuir, 2014, 30, 48-54.                                                                              | 1.6 | 3         |
| 68 | Coverage and Disruption of Phospholipid Membranes by Oxide Nanoparticles. Langmuir, 2014, 30,<br>14581-14590.                                                                          | 1.6 | 32        |
| 69 | Modeling of Ionization and Conformations of Starlike Weak Polyelectrolytes. Macromolecules, 2014, 47, 4004-4016.                                                                       | 2.2 | 58        |
| 70 | Particles Decorated by an Ionizable Thermoresponsive Polymer Brush in Water: Experiments and<br>Self-Consistent Field Modeling. Journal of Physical Chemistry B, 2014, 118, 3192-3206. | 1.2 | 14        |
| 71 | Adhesion and Friction Properties of Polymer Brushes: Fluoro versus Nonfluoro Polymer Brushes at<br>Varying Thickness. Langmuir, 2014, 30, 2068-2076.                                   | 1.6 | 44        |
| 72 | Interactions between Brushes of Root-Tethered Dendrons. Macromolecules, 2014, 47, 6932-6945.                                                                                           | 2.2 | 27        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Interfacial Tension and Wettability in Water–Carbon Dioxide Systems: Experiments and Self-consistent<br>Field Modeling. Journal of Physical Chemistry B, 2013, 117, 8524-8535.           | 1.2 | 15        |
| 74 | A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling. Physical Chemistry Chemical Physics, 2013, 15, 19879.                                                          | 1.3 | 2         |
| 75 | Direct evaluation of the saddle splay modulus of a liquid-liquid interface using the classical mean field lattice model. Journal of Chemical Physics, 2013, 138, 124103.                 | 1.2 | 3         |
| 76 | Dendritic Spherical Polymer Brushes: Theory and Self-Consistent Field Modeling. Macromolecules, 2013, 46, 4651-4662.                                                                     | 2.2 | 35        |
| 77 | Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons,<br>X-rays, and Light. Macromolecules, 2013, 46, 4596-4605.                              | 2.2 | 96        |
| 78 | Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles.<br>Soft Matter, 2013, 9, 7515.                                                       | 1.2 | 12        |
| 79 | On the collapse transition of a polymer brush: the case of lateral mobility. Soft Matter, 2013, 9, 3341-3348.                                                                            | 1.2 | 5         |
| 80 | Bending rigidities of surfactant bilayers using self-consistent field theory. Journal of Chemical<br>Physics, 2013, 138, 154109.                                                         | 1.2 | 8         |
| 81 | Interaction of Silica Nanoparticles with Phospholipid Membranes. Chemistry Letters, 2012, 41, 1322-1324.                                                                                 | 0.7 | 10        |
| 82 | Collapse of Polyelectrolyte Star. Theory and Modeling. Macromolecules, 2012, 45, 2145-2160.                                                                                              | 2.2 | 27        |
| 83 | The influence of charge ratio on transient networks of polyelectrolyte complex micelles. Soft<br>Matter, 2012, 8, 104-117.                                                               | 1.2 | 34        |
| 84 | A self-consistent field study of a hydrocarbon droplet at the air–water interface. Physical Chemistry<br>Chemical Physics, 2012, 14, 4917.                                               | 1.3 | 4         |
| 85 | Polymer Compatibility in Two Dimensions. Modeling of Phase Behavior of Mixed Polymethacrylate<br>Langmuir Films. Langmuir, 2012, 28, 5614-5621.                                          | 1.6 | 9         |
| 86 | On the Two-Population Structure of Brushes Made of Arm-Grafted Polymer Stars. Macromolecules, 2012, 45, 7260-7273.                                                                       | 2.2 | 65        |
| 87 | Hybrid Monte Carlo Self-Consistent Field Approach to Model a Thin Layer of a Polyelectrolyte Gel<br>near an Adsorbing Surface. Journal of Physical Chemistry A, 2012, 116, 6574-6581.    | 1.1 | 6         |
| 88 | Depletion profiles for dilute solutions of linear chains, stars and H-branched molecules by self-consistent field calculations and Monte Carlo simulations. Soft Matter, 2011, 7, 10258. | 1.2 | 5         |
| 89 | Mobility of fluorescently labeled polymer micelles in living cells. Soft Matter, 2011, 7, 1214-1218.                                                                                     | 1.2 | 5         |
| 90 | Thermally sensitive dual fluorescent polymeric micelles for probing cell properties. Soft Matter, 2011,<br>7, 11211.                                                                     | 1.2 | 16        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Comparison of Various Models to Describe the Chargeâ^'pH Dependence of Poly(acrylic acid). Journal<br>of Chemical & Engineering Data, 2011, 56, 1602-1612.                                    | 1.0 | 23        |
| 92  | PMMA Highlights the Layering Transition of PDMS in Langmuir Films. Langmuir, 2011, 27, 2501-2508.                                                                                             | 1.6 | 13        |
| 93  | Modeling the Structure and Antifouling Properties of a Polymer Brush of Grafted Comb-Polymers.<br>Macromolecules, 2011, 44, 2334-2342.                                                        | 2.2 | 41        |
| 94  | Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment. Advances in Polymer Science, 2011, , 57-129.                          | 0.4 | 78        |
| 95  | Pickering Emulsions: Wetting and Colloidal Stability of Hairy Particles—A Self-Consistent Field<br>Theory. Langmuir, 2011, 27, 6574-6583.                                                     | 1.6 | 21        |
| 96  | Formation and structure of ionomer complexes from grafted polyelectrolytes. Colloid and Polymer Science, 2011, 289, 889-902.                                                                  | 1.0 | 3         |
| 97  | How the projection domains of NF-L and α-internexin determine the conformations of NF-M and NF-H in neurofilaments. European Biophysics Journal, 2010, 39, 1323-1334.                         | 1.2 | 28        |
| 98  | Nanowires Formed by the Coâ€Assembly of a Negatively Charged Lowâ€Molecular Weight Gelator and a<br>Zwitterionic Polythiophene. ChemPhysChem, 2010, 11, 1956-1960.                            | 1.0 | 4         |
| 99  | Triggered Templated Assembly of Protein Polymersomes. Angewandte Chemie - International Edition, 2010, 49, 9947-9950.                                                                         | 7.2 | 15        |
| 100 | Molecular modeling of proteinlike inclusions in lipid bilayers: Lipid-mediated interactions. Physical<br>Review E, 2010, 81, 021915.                                                          | 0.8 | 13        |
| 101 | Analytical theory of finite-size effects in mechanical desorption of a polymer chain. Journal of Chemical Physics, 2010, 132, 064110.                                                         | 1.2 | 13        |
| 102 | The Polymer Brush Model of Neurofilament Projections: Effect of Protein Composition. Biophysical<br>Journal, 2010, 98, 462-469.                                                               | 0.2 | 21        |
| 103 | Dendritic versus Linear Polymer Brushes: Self-Consistent Field Modeling, Scaling Theory, and Experiments. Macromolecules, 2010, 43, 9555-9566.                                                | 2.2 | 65        |
| 104 | Field Theoretical Analysis of Driving Forces for the Uptake of Proteins by Like-Charged<br>Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness. Langmuir, 2010, 26, 249-259. | 1.6 | 86        |
| 105 | Polymers at the Water/Air Interface, Surface Pressure Isotherms, and Molecularly Detailed Modeling.<br>Langmuir, 2010, 26, 11850-11861.                                                       | 1.6 | 19        |
| 106 | Electrical Double-Layer Capacitance in Room Temperature Ionic Liquids: Ion-Size and Specific<br>Adsorption Effects. Journal of Physical Chemistry B, 2010, 114, 11149-11154.                  | 1.2 | 79        |
| 107 | Modeling of the 3RS tau protein with self-consistent field method and Monte Carlo simulation. Soft<br>Matter, 2010, 6, 5533.                                                                  | 1.2 | 5         |
| 108 | Gerard Fleer: straightforward on random walks. Advances in Colloid and Interface Science, 2010, 159, 95-8.                                                                                    | 7.0 | 0         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Temperature effects in the mechanical desorption of an infinitely long lattice chain: Re-entrant phase diagrams. Journal of Chemical Physics, 2009, 130, 174704.                     | 1.2 | 22        |
| 110 | Room-Temperature Ionic Liquids: Excluded Volume and Ion Polarizability Effects in the Electrical Double-Layer Structure and Capacitance. Physical Review Letters, 2009, 103, 117801. | 2.9 | 95        |
| 111 | Molecular modeling of intermolecular and intramolecular excluded volume interactions for polymers at interfaces. Journal of Chemical Physics, 2009, 131, 244115.                     | 1.2 | 7         |
| 112 | Block Copolymer Micellisation in a Common Solvent Modeled by Selfâ€Consistent Field Calculations.<br>Macromolecular Symposia, 2009, 278, 57-66.                                      | 0.4 | 1         |
| 113 | Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. European Polymer Journal, 2009, 45, 2913-2925.          | 2.6 | 26        |
| 114 | Modeling the structure of a polydisperse polymer brush. Polymer, 2009, 50, 305-316.                                                                                                  | 1.8 | 104       |
| 115 | Colloidal Stability Influenced by Inhomogeneous Surfactant Assemblies in Confined Spaces. Journal of<br>Physical Chemistry B, 2009, 113, 11186-11193.                                | 1.2 | 3         |
| 116 | Modeling of Charged Amphiphilic Copolymer Stars near Hydrophobic Surfaces. Langmuir, 2009, 25, 11516-11527.                                                                          | 1.6 | 6         |
| 117 | Formation of nanotapes by co-assembly of triblock peptide copolymers and polythiophenes in aqueous solution. Soft Matter, 2009, 5, 1668.                                             | 1.2 | 13        |
| 118 | Interaction of Particles with a Polydisperse Brush: A Self-Consistent-Field Analysis. Macromolecules, 2009, 42, 5881-5891.                                                           | 2.2 | 37        |
| 119 | Mechanical Unfolding of a Homopolymer Globule Studied by Self-Consistent Field Modeling.<br>Macromolecules, 2009, 42, 5360-5371.                                                     | 2.2 | 17        |
| 120 | Small monodisperse unilamellar vesicles from binary copolymer mixtures. Soft Matter, 2009, 5, 4169.                                                                                  | 1.2 | 19        |
| 121 | Field theoretical modeling of the coexistence of micelles and vesicles in binary copolymer mixtures.<br>Soft Matter, 2009, 5, 4173.                                                  | 1.2 | 13        |
| 122 | New ends to the tale of tails: adsorption of comb polymers and the effect on colloidal stability. Soft Matter, 2009, 5, 1448.                                                        | 1.2 | 18        |
| 123 | Pluronic polymersomes stabilized by core cross-linked polymer micelles. Soft Matter, 2009, 5, 4042.                                                                                  | 1.2 | 25        |
| 124 | On the polyelectrolyte brush model of neurofilaments. Soft Matter, 2009, 5, 2836.                                                                                                    | 1.2 | 19        |
| 125 | Phase behavior of flowerlike micelles in a SCF cell model. European Physical Journal E, 2008, 25, 163-173.                                                                           | 0.7 | 23        |
| 126 | Comprehensive theory for star-like polymer micelles; combining classical nucleation and polymer brush theory. Physical Chemistry Chemical Physics, 2008, 10, 5308.                   | 1.3 | 7         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Pearl-Necklace Structures in Coreâ^'Shell Molecular Brushes: Experiments, Monte Carlo Simulations, and Self-Consistent Field Modeling. Macromolecules, 2008, 41, 4020-4028.                              | 2.2 | 45        |
| 128 | Comparison between Inhomogeneous Adsorption of Charged Surfactants on Airâ^'Water and on<br>Solidâ^'Water Interfaces by Self-Consistent Field Theory. Langmuir, 2008, 24, 6496-6503.                     | 1.6 | 13        |
| 129 | Counterion Localization in Solutions of Starlike Polyelectrolytes and Colloidal Polyelectrolyte<br>Brushes: A Self-Consistent Field Theory. Langmuir, 2008, 24, 10026-10034.                             | 1.6 | 24        |
| 130 | Complex coacervate core micro-emulsions. Soft Matter, 2008, 4, 1473.                                                                                                                                     | 1.2 | 25        |
| 131 | On the Curvature Energy of a Thin Membrane Decorated by Polymer Brushes. Macromolecules, 2008, 41, 478-488.                                                                                              | 2.2 | 29        |
| 132 | Modeling of Triblock Terpolymer Micelles with a Segregated Corona. Macromolecules, 2008, 41, 3668-3677.                                                                                                  | 2.2 | 20        |
| 133 | Adsorption of Molecular Brushes with Polyelectrolyte Backbones onto Oppositely Charged Surfaces:<br>A Self-Consistent Field Theory. Langmuir, 2008, 24, 7232-7244.                                       | 1.6 | 35        |
| 134 | Self-Consistent Field Modeling of Adsorption from Polymer/Surfactant Mixtures. Langmuir, 2008, 24,<br>6712-6720.                                                                                         | 1.6 | 14        |
| 135 | Capillary Adhesion in the Limit of Saturation:  Thermodynamics, Self-Consistent Field Modeling and Experiment. Langmuir, 2008, 24, 1308-1317.                                                            | 1.6 | 22        |
| 136 | Gentle Immobilization of Nonionic Polymersomes on Solid Substrates. Langmuir, 2008, 24, 76-82.                                                                                                           | 1.6 | 24        |
| 137 | Self-Consistent Field Modeling of Non-ionic Surfactants at the Silicaâ^'Water Interface:  Incorporating<br>Molecular Detail. Langmuir, 2008, 24, 3960-3969.                                              | 1.6 | 12        |
| 138 | Self-Consistent Field Modeling of Poly(ethylene oxide) Adsorption onto Silica:  The Multiple Roles of<br>Electrolytes. Langmuir, 2008, 24, 1930-1942.                                                    | 1.6 | 25        |
| 139 | Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles.<br>Physical Review E, 2007, 76, 011903.                                                            | 0.8 | 24        |
| 140 | Interaction of cholesterol-like molecules in polyunsaturated phosphatidylcholine lipid bilayers as revealed by a self-consistent field theory. Physical Review E, 2007, 76, 031904.                      | 0.8 | 7         |
| 141 | Analysis of the Longitudinal Structure of a Collapsed Molecular Bottle Brush Using a Self-Consistent<br>Field Approach. International Journal of Polymer Analysis and Characterization, 2007, 12, 47-55. | 0.9 | 5         |
| 142 | On the curvature dependence of the interfacial tension in a symmetric three-component interface.<br>Physical Chemistry Chemical Physics, 2007, 9, 167-179.                                               | 1.3 | 5         |
| 143 | Competitive Adsorption of Nonionic Surfactant and Nonionic Polymer on Silica. Langmuir, 2007, 23, 5532-5540.                                                                                             | 1.6 | 48        |
| 144 | Equilibrium Capillary Forces with Atomic Force Microscopy. Physical Review Letters, 2007, 99, 104504.                                                                                                    | 2.9 | 31        |

| #   | Article                                                                                                                                                                                                                         | IF                | CITATIONS          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 145 | Entropic Stabilization and Equilibrium Size of Lipid Vesicles. Langmuir, 2007, 23, 6315-6320.                                                                                                                                   | 1.6               | 29                 |
| 146 | Stabilization of Polymersome Vesicles by an Interpenetrating Polymer Network. Macromolecules, 2007, 40, 329-333.                                                                                                                | 2.2               | 25                 |
| 147 | Opposing Effects of Cation Binding and Hydration on the Bending Rigidity of Anionic Lipid Bilayers.<br>Journal of Physical Chemistry B, 2007, 111, 7127-7132.                                                                   | 1.2               | 23                 |
| 148 | Persistence Length of Wormlike Micelles Composed of Ionic Surfactants:Â Self-Consistent-Field<br>Predictions. Journal of Physical Chemistry B, 2007, 111, 8158-8168.                                                            | 1.2               | 12                 |
| 149 | Micellization of Telechelic Associative Polymers:Â Self-Consistent Field Modeling and Comparison with<br>Scaling Concepts. Journal of Physical Chemistry B, 2007, 111, 2903-2909.                                               | 1.2               | 7                  |
| 150 | On the Mechanism of Uptake of Globular Proteins by Polyelectrolyte Brushes:Â A Two-Gradient<br>Self-Consistent Field Analysis. Langmuir, 2007, 23, 3937-3946.                                                                   | 1.6               | 77                 |
| 151 | A Self-Consistent Field Analysis of the Neurofilament Brush with Amino-Acid Resolution. Biophysical Journal, 2007, 93, 1421-1430.                                                                                               | 0.2               | 51                 |
| 152 | Effect of the Ionic Strength and pH on the Equilibrium Structure of a Neurofilament Brush.<br>Biophysical Journal, 2007, 93, 1452-1463.                                                                                         | 0.2               | 39                 |
| 153 | Can Linear Micelles Bridge between Two Surfaces?. Journal of Physical Chemistry B, 2006, 110, 18415-18423.                                                                                                                      | 1.2               | 17                 |
| 154 | Self-Consistent Field Modeling of Linear Nonionic Micelles. Journal of Physical Chemistry B, 2006, 110,<br>6300-6311.                                                                                                           | 1.2               | 24                 |
| 155 | On the Escape Transition of a Tethered Gaussian Chain; Exact Results in Two Conjugate Ensembles.<br>Macromolecular Symposia, 2006, 237, 73-80.                                                                                  | 0.4               | 12                 |
| 156 | Confinement-Induced Symmetry Breaking of Interfacial Surfactant Layers. Journal of Physical<br>Chemistry B, 2006, 110, 8756-8763.                                                                                               | 1.2               | 9                  |
| 157 | Coexistence of Crew-Cut and Starlike Spherical Micelles Composed of Copolymers with an Annealed<br>Polyelectrolyte Block. Macromolecules, 2006, 39, 3628-3641.                                                                  | 2.2               | 32                 |
| 158 | On the Binding of Calcium by Micelles Composed of Carboxy-Modified Pluronics Measured by Means of<br>Differential Potentiometric Titration and Modeled with a Self-Consistent-Field Theory. Langmuir,<br>2006, 22, 10932-10941. | 1.6               | 6                  |
| 159 | Why Surfaces Modified by Flexible Polymers Often Have a Finite Contact Angle for Good Solvents.<br>Langmuir, 2006, 22, 1722-1728.                                                                                               | 1.6               | 60                 |
| 160 | Self-Consistent-Field Analysis of the Micellization of Carboxy-Modified Poly(ethylene) Tj ETQq0 0 0 rgBT /Overloc<br>B, 2006, 110, 465-477.                                                                                     | k 10 Tf 50<br>1.2 | 147 Td (oxid<br>23 |
| 161 | Symmetric Liquid-Liquid Interface with a Nonzero Spontaneous Curvature. Physical Review Letters, 2006, 97, 066103.                                                                                                              | 2.9               | 7                  |
| 162 | Double-Faced Micelles from Water-Soluble Polymers. Angewandte Chemie - International Edition, 2006,<br>45, 6673-6676.                                                                                                           | 7.2               | 174                |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Interaction between two solid surfaces across PDMS: influence of chain length and end group.<br>Composite Interfaces, 2005, 12, 805-815.                                                  | 1.3 | 3         |
| 164 | Association Colloids and their Equilibrium Modelling. Fundamentals of Interface and Colloid Science, 2005, 5, 4.1-4.123.                                                                  | 0.1 | 18        |
| 165 | Continuum formulation of the Scheutjens-Fleer lattice statistical theory for homopolymer adsorption from solution. Journal of Chemical Physics, 2005, 123, 174901.                        | 1.2 | 6         |
| 166 | Surface forces in a confined polymer melt: Self-consistent field analysis of full and restricted equilibrium cases. Physical Review E, 2005, 72, 021807.                                  | 0.8 | 18        |
| 167 | Steady-state analysis of polymer adsorption at and transport across an interface between two polymer phases. Faraday Discussions, 2005, 129, 315.                                         | 1.6 | 1         |
| 168 | Molecular modeling of lipid bilayers and the effect of protein-like inclusions. Physical Chemistry<br>Chemical Physics, 2005, 7, 1996.                                                    | 1.3 | 25        |
| 169 | Confinement-Induced Phase Transition and Hysteresis in Colloidal Forces for Surfactant Layers on Hydrophobic Surfaces. Langmuir, 2005, 21, 10089-10095.                                   | 1.6 | 15        |
| 170 | Bending Moduli and Spontaneous Curvature of the Monolayer in a Surfactant Bilayer. Journal of<br>Physical Chemistry B, 2005, 109, 14251-14256.                                            | 1.2 | 13        |
| 171 | Bending Rigidity and Induced Persistence Length of Molecular Bottle Brushes:Â A Self-Consistent-Field<br>Theory. Macromolecules, 2005, 38, 8891-8901.                                     | 2.2 | 122       |
| 172 | Modeling of Confinement-Induced Phase Transitions for Surfactant Layers on Amphiphilic Surfaces.<br>Langmuir, 2005, 21, 11534-11545.                                                      | 1.6 | 18        |
| 173 | Molecular Modelling of Biological Membranes: Structure and Permeation Properties. , 2004, , 15-111.                                                                                       |     | 1         |
| 174 | Depletion interaction measured by colloidal probe atomic force microscopy. Physical Chemistry Chemical Physics, 2004, 6, 4432.                                                            | 1.3 | 18        |
| 175 | Coexistence of Spheres and Rods in Micellar Solution of Dodecyldimethylamine Oxide. Journal of Physical Chemistry B, 2004, 108, 5980-5988.                                                | 1.2 | 49        |
| 176 | Self-Consistent Field Analysis of Ionic Surfactant Adsorption Regulation in the Aqueous Film between<br>Two Neutral Solids. Journal of Physical Chemistry B, 2004, 108, 3633-3643.        | 1.2 | 7         |
| 177 | Confinement-Induced Phase Behavior and Adsorption Regulation of Ionic Surfactants in the Aqueous<br>Film between Charged Solids. Journal of Physical Chemistry B, 2004, 108, 15033-15042. | 1.2 | 19        |
| 178 | Detailed Modeling of the Volume Fraction Profile of Adsorbed Polymer Layers Using Small-Angle<br>Neutron Scattering. Langmuir, 2004, 20, 4480-4488.                                       | 1.6 | 30        |
| 179 | Electrostatic Interactions between Double Layers:Â Influence of Surface Roughness, Regulation, and<br>Chemical Heterogeneities. Langmuir, 2004, 20, 5052-5065.                            | 1.6 | 48        |
| 180 | Charged Lipid Vesicles: Effects of Salts on Bending Rigidity, Stability, and Size. Biophysical Journal, 2004, 87, 3882-3893.                                                              | 0.2 | 128       |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Negative compressibility for a polymer chain squeezed between two pistons going through the escape transition. Journal of Statistical Mechanics: Theory and Experiment, 2004, 2004, P10001.                                                                               | 0.9 | 8         |
| 182 | Self-Consistent-Field Prediction for the Persistence Length of Wormlike Micelles of Nonionic<br>Surfactants. Journal of Physical Chemistry B, 2003, 107, 10912-10918.                                                                                                     | 1.2 | 28        |
| 183 | Self-Consistent Field Model of Inhomogeneous Adsorption of Nonionic Surfactants onto Polystyrene<br>Latex. Langmuir, 2003, 19, 878-887.                                                                                                                                   | 1.6 | 21        |
| 184 | On the charge overcompensation of quenched polyelectrolyte stars electrostatically adsorbed onto a quenched oppositely charged planar surface. Journal of Chemical Physics, 2003, 118, 969-980.                                                                           | 1.2 | 7         |
| 185 | Self-consistent-field modeling of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to molecular dynamics simulations. Physical Review E, 2003, 67, 011910.                                                                                  | 0.8 | 35        |
| 186 | Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modeling. Physical Review E, 2003, 67, 011909.                                                                                  | 0.8 | 37        |
| 187 | When tethered chains meet free ones; the stability of polymer wetting films on polymer brushes.<br>Macromolecular Symposia, 2003, 191, 69-80.                                                                                                                             | 0.4 | 7         |
| 188 | First-order wetting transition at finite contact angle. Physical Review E, 2002, 66, 051801.                                                                                                                                                                              | 0.8 | 7         |
| 189 | Exactly solved polymer models with conformational escape transitions of a coil-to-flower type.<br>Europhysics Letters, 2002, 58, 292-298.                                                                                                                                 | 0.7 | 24        |
| 190 | Wetting of a Polymer Brush by a Chemically Identical Polymer Melt:  Phase Diagram and Film Stability.<br>Langmuir, 2002, 18, 8871-8880.                                                                                                                                   | 1.6 | 62        |
| 191 | Polymerâ^'Surface Interactions in Bridging Escape and Localization Transitions. Macromolecules, 2002, 35, 8640-8649.                                                                                                                                                      | 2.2 | 12        |
| 192 | A Self-Consistent-Field Analysis of the Surface Structure and Surface Tension of Partially Fluorinated Copolymers:  The Influence of Polymer Architecture. Macromolecules, 2002, 35, 5670-5680.                                                                           | 2.2 | 19        |
| 193 | An Annealed Polyelectrolyte Brush in a Polarâ `'Nonpolar Binary Solvent:Â Effect of pH and Ionic<br>Strength. Macromolecules, 2002, 35, 4739-4752.                                                                                                                        | 2.2 | 24        |
| 194 | Modeling the Effect of Structural Details of Nonionic Surfactants on Micellization in Solution and Adsorption onto Hydrophobic Surfaces. Langmuir, 2002, 18, 8706-8713.                                                                                                   | 1.6 | 16        |
| 195 | Self-Consistent-Field Analysis of Poly(ethylene oxide)â^'Poly(propylene oxide)â^'Poly(ethylene oxide)<br>Surfactants:Â Micellar Structure, Critical Micellization Concentration, Critical Micellization<br>Temperature, and Cloud Point. Langmuir, 2002, 18, 10467-10474. | 1.6 | 34        |
| 196 | Molar mass effects in reversed-phase gradient polymer-elution chromatography of oligomers.<br>Chromatographia, 2002, 55, 533-540.                                                                                                                                         | 0.7 | 8         |
| 197 | Molecular modelling of chain end effects in separating oligomers by reversed-phase gradient polymer elution chromatography; adsorption transition as revealed by a self-consistent-field theory for polymer adsorption. Journal of Chromatography A, 2002, 959, 37-47.    | 1.8 | 7         |
| 198 | Effect of a Polymer Brush on Capillary Condensation. Langmuir, 2001, 17, 4459-4466.                                                                                                                                                                                       | 1.6 | 21        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Coil-to-Flower Transition of a Polymer Chain Pinned near a Stepwise External Potential:Â Finite Size<br>Effects. Macromolecules, 2001, 34, 8294-8302.                                                                                             | 2.2 | 5         |
| 200 | Adsorption of Tethered Polyelectrolytes onto Oppositely Charged Solidâ^'Liquid Interfaces. Langmuir, 2001, 17, 1277-1293.                                                                                                                         | 1.6 | 25        |
| 201 | First-order coil-to-flower transition of a polymer chain pinned near a stepwise external potential:<br>Numerical, analytical, and scaling analysis. Journal of Chemical Physics, 2001, 115, 1586-1595.                                            | 1.2 | 19        |
| 202 | Wetting transitions in symmetrical polymer blends. Journal of Chemical Physics, 2001, 114, 4267-4276.                                                                                                                                             | 1.2 | 5         |
| 203 | Polyelectrolytes tethered to a similarly charged surface. Journal of Chemical Physics, 2001, 114, 7700-7712.                                                                                                                                      | 1.2 | 31        |
| 204 | The rolling transition of a Gaussian chain end-grafted at a penetrable surface. Journal of Chemical Physics, 2000, 112, 7238-7246.                                                                                                                | 1.2 | 9         |
| 205 | Thermodynamics and mechanics of bilayer membranes. Physical Review E, 2000, 62, 8453-8461.                                                                                                                                                        | 0.8 | 33        |
| 206 | Amphiphilic Polymer Brush in a Mixture of Incompatible Liquids. Numerical Self-Consistent-Field<br>Calculations. Macromolecules, 2000, 33, 1072-1081.                                                                                             | 2.2 | 18        |
| 207 | Wetting Transition in a Polymer Brush:Â Polymer Droplet Coexisting with Two Film Thicknesses.<br>Langmuir, 2000, 16, 3478-3481.                                                                                                                   | 1.6 | 22        |
| 208 | Wetting of a Polymer Brush, a System with Pronounced Critical Wetting. Langmuir, 2000, 16, 7082-7087.                                                                                                                                             | 1.6 | 11        |
| 209 | Wetting by polymers of a liquid–liquid interface: Effects of short-range interactions and of chain<br>stiffness. Journal of Chemical Physics, 1999, 110, 6491-6499.                                                                               | 1.2 | 5         |
| 210 | Wetting of a fluid interface by a homopolymer: A system with a rich prewetting behavior. Journal of Chemical Physics, 1999, 111, 2797-2808.                                                                                                       | 1.2 | 3         |
| 211 | Self-consistent-field modeling of complex molecules with united atom detail in inhomogeneous<br>systems. Cyclic and branched foreign molecules in dimyristoylphosphatidylcholine membranes.<br>Journal of Chemical Physics, 1999, 110, 6560-6579. | 1.2 | 44        |
| 212 | Thermodynamic derivation of mechanical expressions for interfacial parameters. Physical Chemistry Chemical Physics, 1999, 1, 4987-4994.                                                                                                           | 1.3 | 21        |
| 213 | On the Pressure in Mean-Field Lattice Models. Langmuir, 1999, 15, 8609-8617.                                                                                                                                                                      | 1.6 | 12        |
| 214 | Screening in Solutions of Star-Branched Polyelectrolytes. Macromolecules, 1999, 32, 2365-2377.                                                                                                                                                    | 2.2 | 93        |
| 215 | Modeling of the Electrified Interface of Liquid Membrane Ion-Selective Electrodes. Journal of Physical<br>Chemistry B, 1999, 103, 852-859.                                                                                                        | 1.2 | 1         |
| 216 | Grafted Adsorbing Polymers:  Scaling Behavior and Phase Transitions. Macromolecules, 1999, 32,<br>487-498.                                                                                                                                        | 2.2 | 56        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Molecular Mechanism of the Renneting Process of Casein Micelles in Skim Milk, Examined by Viscosity<br>and Light-Scattering Experiments and Simulated by Model SCF Calculations. Langmuir, 1999, 15,<br>6304-6313. | 1.6 | 37        |
| 218 | Long Minority Chains in a Polymer Brush:Â A First-Order Adsorption Transition. Macromolecules, 1999, 32, 2004-2015.                                                                                                | 2.2 | 45        |
| 219 | Micellization at Surfaces. Theory of Polydisperse Rodlike Micelles. Langmuir, 1998, 14, 2693-2701.                                                                                                                 | 1.6 | 2         |
| 220 | Semi-flexible polymers at a liquid–liquid interface: Self-consistent field calculations. Journal of Chemical Physics, 1998, 109, 4592-4601.                                                                        | 1.2 | 11        |
| 221 | Calculation of Concentration and Electrostatic Potential Profiles at Liquid-Membrane/Water and Liquid/Liquid Interfaces Analytical Sciences, 1998, 14, 137-140.                                                    | 0.8 | 4         |
| 222 | Self-consistent-field modelling of casein adsorption Comparison of results for αs1-casein and β-casein.<br>Journal of the Chemical Society, Faraday Transactions, 1997, 93, 425-432.                               | 1.7 | 51        |
| 223 | Brush Theory of Tethered Chains with a Charged Group at the Free End. Macromolecules, 1997, 30, 584-589.                                                                                                           | 2.2 | 15        |
| 224 | The Adsorption of Nonionic Surfactants in Hydrophilic Cylindrical Pores. 2. Mean Field Lattice<br>Calculations. Langmuir, 1997, 13, 6618-6625.                                                                     | 1.6 | 15        |
| 225 | Critical Point Wetting for Binary Two-Phase Polymerâ^'Solvent Mixtures on Solid Interfaces. Langmuir, 1997, 13, 5751-5755.                                                                                         | 1.6 | 8         |
| 226 | Adsorption of Nonionic Surfactants in Hydrophilic Cylindrical Pores. 1. A Thermodynamic Analysis.<br>Langmuir, 1997, 13, 6452-6460.                                                                                | 1.6 | 15        |
| 227 | Adsorption of Weak Polyelectrolytes on Surfaces with a Variable Charge. Self-Consistent-Field<br>Calculations. Langmuir, 1997, 13, 4413-4421.                                                                      | 1.6 | 50        |
| 228 | Self-consistent-field modelling of adsorbed casein Interaction between two protein-coated surfaces.<br>Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1785-1790.                                 | 1.7 | 78        |
| 229 | Adsorption of Semiflexible Polymers. Macromolecules, 1996, 29, 1172-1178.                                                                                                                                          | 2.2 | 45        |
| 230 | Theory of the Collapse of the Polyelectrolyte Brush. Macromolecules, 1996, 29, 8260-8270.                                                                                                                          | 2.2 | 71        |
| 231 | Self-consistent field theory for wetting of binary polymer–solvent mixtures on rigid and soft<br>interfaces. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 579-587.                             | 1.7 | 19        |
| 232 | Adsorption of Comb Polymers. Macromolecules, 1996, 29, 1000-1005.                                                                                                                                                  | 2.2 | 34        |
| 233 | Theoretical and experimental investigations of adsorbed protein structure at a fluid interface.<br>Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 994-998.                                           | 0.9 | 31        |
| 234 | Self-Consistent-Field Modeling of Adsorbed β-Casein: Effects of pH and Ionic Strength on Surface<br>Coverage and Density Profile. Journal of Colloid and Interface Science, 1996, 178, 681-693.                    | 5.0 | 122       |

| #   | Article                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Self-Consistent-Field Lattice Gas Model for the Surface Ordering Transition ofn-Hexadecane. Physical<br>Review Letters, 1996, 76, 82-85.                         | 2.9 | 35        |
| 236 | Computer modeling of the membrane-solution interface of liquid membrane ion-selective electrodes.<br>Electroanalysis, 1995, 7, 877-883.                          | 1.5 | 6         |
| 237 | The effects of local stiffness disparity on the surface segregation from binary polymer blends.<br>Journal of Chemical Physics, 1995, 103, 10332-10346.          | 1.2 | 34        |
| 238 | Modeling the interactions between phospholipid bilayer membranes with and without additives. The<br>Journal of Physical Chemistry, 1995, 99, 17282-17293.        | 2.9 | 21        |
| 239 | Adsorption of Charged Block Copolymers: Effect on Colloidal Stability. Macromolecules, 1995, 28, 1626-1634.                                                      | 2.2 | 28        |
| 240 | On the Structure of Polymeric Micelles: Self-Consistent-Field Theory and Universal Properties for Volume Fraction Profiles. Macromolecules, 1995, 28, 3434-3443. | 2.2 | 47        |
| 241 | Depletion Zones in Polyelectrolyte Systems: Polydispersity Effects and Colloidal Stability. Langmuir, 1995, 11, 2996-3006.                                       | 1.6 | 26        |
| 242 | Tethered Adsorbing Chains: Neutron Reflectivity and Surface Pressure of Spread Diblock Copolymer<br>Monolayers. Langmuir, 1995, 11, 4467-4473.                   | 1.6 | 148       |
| 243 | Analytical Self-Consistent-Field Model of Weak Polyacid Brushes. Macromolecules, 1995, 28, 3562-3569.                                                            | 2.2 | 190       |
| 244 | Chain stiffness and bond correlations in polymer brushes. Journal of Chemical Physics, 1994, 101, 8214-8223.                                                     | 1.2 | 42        |
| 245 | Multiblock Copolymers and Colloidal Stability. Journal of Colloid and Interface Science, 1994, 167, 124-134.                                                     | 5.0 | 45        |
| 246 | On the Theory of Grafted Weak Polyacids. Macromolecules, 1994, 27, 3087-3093.                                                                                    | 2.2 | 199       |
| 247 | Diblock Copolymer Adsorption on Small Particles. Langmuir, 1994, 10, 1331-1333.                                                                                  | 1.6 | 17        |
| 248 | Adsorption Theory for Polydisperse Polymers. Macromolecules, 1994, 27, 4810-4816.                                                                                | 2.2 | 33        |
| 249 | Bending Moduli and Spontaneous Curvature. 2. Bilayers and Monolayers of Pure and Mixed Ionic<br>Surfactants. Langmuir, 1994, 10, 1084-1092.                      | 1.6 | 32        |
| 250 | Modeling of the electrolyte ion-phospholipid layer interaction. Langmuir, 1994, 10, 1199-1206.                                                                   | 1.6 | 25        |
| 251 | Adsorption of Polymers on Heterogeneous Surfaces. Macromolecules, 1994, 27, 1915-1921.                                                                           | 2.2 | 21        |
| 252 | Pair Potentials between Polymer-Coated Mesoscopic Particles. Langmuir, 1994, 10, 4514-4516.                                                                      | 1.6 | 41        |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Charged Polymeric Brushes: Structure and Scaling Relations. Macromolecules, 1994, 27, 3249-3261.                                                                                 | 2.2 | 240       |
| 254 | Polymer adsorption on heterogeneous surfaces. Macromolecular Symposia, 1994, 81, 195-197.                                                                                        | 0.4 | 2         |
| 255 | Predictions of copolymer micelle behavior in immiscible solvents. Langmuir, 1992, 8, 429-436.                                                                                    | 1.6 | 26        |
| 256 | On the self-similar structure of adsorbed polymer layers: dependence of the density profile on molecular weight and solution concentration. Macromolecules, 1992, 25, 3449-3453. | 2.2 | 24        |
| 257 | Block copolymer adsorption studied by dynamic scanning angle reflectometry. Macromolecules, 1991, 24, 718-730.                                                                   | 2.2 | 47        |
| 258 | Statistical thermodynamics of association colloids: V. critical micelle concentration, micellar size and shape. Journal of Colloid and Interface Science, 1990, 136, 231-241.    | 5.0 | 54        |
| 259 | Statistical thermodynamics of association colloids. IV. Inhomogeneous membrane systems. Biochimica<br>Et Biophysica Acta - Biomembranes, 1990, 1024, 139-151.                    | 1.4 | 28        |
| 260 | The Equilibrium Structure of Micelles. , 1989, , 43-60.                                                                                                                          |     | 5         |
| 261 | Statistical thermodynamics of association colloids. 2. Lipid vesicles. The Journal of Physical Chemistry, 1989, 93, 7417-7426.                                                   | 2.9 | 61        |
| 262 | Comment on "Thermodynamics of the separation of biomaterials in two-phase aqueous polymer systems: effect of the phase-forming polymers". Macromolecules, 1988, 21, 1876-1877.   | 2.2 | 12        |
| 263 | Statistical thermodynamics of association colloids. III. The gel to liquid phase transition of lipid bilayer membranes. Journal of Chemical Physics, 1988, 89, 6912-6924.        | 1.2 | 76        |
| 264 | Statistical thermodynamics of association colloids. I. Lipid bilayer membranes. Journal of Chemical Physics, 1988, 89, 3264-3274.                                                | 1.2 | 127       |
| 265 | Configuration of terminally attached chains at the solid/solvent interface: self-consistent field theory and a Monte Carlo model. Macromolecules, 1987, 20, 1692-1696.           | 2.2 | 230       |
| 266 | Modelling the amorphous phase of a melt crystallized, semicrystalline polymer: segment distribution, chain stiffness, and deformation. Polymer, 1984, 25, 1577-1588.             | 1.8 | 28        |
| 267 | Theory of Y―and Combâ€Shaped Polymer Brushes: The Parabolic Potential Framework. Macromolecular<br>Theory and Simulations, 0, , 2100037.                                         | 0.6 | 0         |