
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283958/publications.pdf Version: 2024-02-01

SöNKE IOHNSEN

#	Article	IF	CITATIONS
1	Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology, 1991, 149, 467-505.	1.7	407
2	The physics and neurobiology of magnetoreception. Nature Reviews Neuroscience, 2005, 6, 703-712.	10.2	331
3	Polarized light as a butterfly mating signal. Nature, 2003, 423, 31-32.	27.8	235
4	Hidden in Plain Sight: The Ecology and Physiology of Organismal Transparency. Biological Bulletin, 2001, 201, 301-318.	1.8	219
5	Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth <i>Deilephila elpenor</i> . Journal of Experimental Biology, 2006, 209, 789-800.	1.7	202
6	Visual Acuity and the Evolution of Signals. Trends in Ecology and Evolution, 2018, 33, 358-372.	8.7	201
7	Magnetoreception in animals. Physics Today, 2008, 61, 29-35.	0.3	165
8	The neurobiology of magnetoreception in vertebrate animals. Trends in Neurosciences, 2000, 23, 153-159.	8.6	124
9	The Physical Basis of Transparency in Biological Tissue: Ultrastructure and the Minimization of Light Scattering. Journal of Theoretical Biology, 1999, 199, 181-198.	1.7	122
10	Autophagy and mitophagy participate in ocular lens organelle degradation. Experimental Eye Research, 2013, 116, 141-150.	2.6	110
11	COMPETITION FOR HUMMINGBIRD POLLINATION SHAPES FLOWER COLOR VARIATION IN ANDEAN SOLANACEAE. Evolution; International Journal of Organic Evolution, 2014, 68, n/a-n/a.	2.3	105
12	Psychophysics and the evolution of behavior. Trends in Ecology and Evolution, 2014, 29, 291-300.	8.7	98
13	The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth. Current Biology, 2018, 28, 2160-2166.e5.	3.9	94
14	Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation. Marine Biology, 2001, 138, 717-730.	1.5	91
15	Visual acuity in ray-finned fishes correlates with eye size and habitat. Journal of Experimental Biology, 2017, 220, 1586-1596.	1.7	89
16	Hide and Seek in the Open Sea: Pelagic Camouflage and Visual Countermeasures. Annual Review of Marine Science, 2014, 6, 369-392.	11.6	87
17	A Unique Advantage for Giant Eyes in Giant Squid. Current Biology, 2012, 22, 683-688.	3.9	85
18	Cataract formation in a strain of rats selected for high oxidative stress. Experimental Eye Research, 2004, 79, 595-612.	2.6	84

#	Article	IF	CITATIONS
19	Cryptic and conspicuous coloration in the pelagic environment. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 243-256.	2.6	77
20	Categorical perception of colour signals in a songbird. Nature, 2018, 560, 365-367.	27.8	76
21	Transparency and Visibility of Gelatinous Zooplankton from the Northwestern Atlantic and Gulf of Mexico. Biological Bulletin, 1998, 195, 337-348.	1.8	74
22	A Chiton Uses Aragonite Lenses to Form Images. Current Biology, 2011, 21, 665-670.	3.9	74
23	Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160335.	4.0	74
24	Giant Deep-Sea Protist Produces Bilaterian-like Traces. Current Biology, 2008, 18, 1849-1854.	3.9	72
25	Spatial vision in the echinoid genus Echinometra. Journal of Experimental Biology, 2004, 207, 4249-4253.	1.7	67
26	Twilight spectral dynamics and the coral reef invertebrate spawning response. Journal of Experimental Biology, 2011, 214, 770-777.	1.7	67
27	Propagation and Perception of Bioluminescence: Factors Affecting Counterillumination as a Cryptic Strategy. Biological Bulletin, 2004, 207, 1-16.	1.8	66
28	<scp>AcuityView</scp> : <scp> An </scp> <scp>r</scp> package for portraying the effects of visual acuity on scenes observed by an animal. Methods in Ecology and Evolution, 2018, 9, 793-797.	5.2	63
29	Vision and the light environment. Current Biology, 2013, 23, R990-R994.	3.9	62
30	Mesopelagic Cephalopods Switch between Transparency and Pigmentation to Optimize Camouflage in the Deep. Current Biology, 2011, 21, 1937-1941.	3.9	60
31	The Red and the Black: Bioluminescence and the Color of Animals in the Deep Sea. Integrative and Comparative Biology, 2005, 45, 234-246.	2.0	58
32	Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from <i>in situ</i> polarization imaging of transparent zooplankton. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 655-670.	4.0	57
33	How to measure color using spectrometers and calibrated photographs. Journal of Experimental Biology, 2016, 219, 772-778.	1.7	57
34	Bringing the analysis of animal orientation data full circle: model-based approaches with maximum likelihood. Journal of Experimental Biology, 2017, 220, 3878-3882.	1.7	57
35	Spatial vision in the purple sea urchin <i>Strongylocentrotus purpuratus</i> (Echinoidea). Journal of Experimental Biology, 2010, 213, 249-255.	1.7	56
36	Cryptic coloration and mirrored sides as camouflage strategies in nearâ€surface pelagic habitats: Implications for foraging and predator avoidance. Limnology and Oceanography, 2003, 48, 1277-1288.	3.1	54

#	Article	IF	CITATIONS
37	The male blue crab, <i>Callinectes sapidus</i> , uses both chromatic and achromatic cues during mate choice. Journal of Experimental Biology, 2012, 215, 1184-1191.	1.7	53
38	Predicted Light Scattering from Particles Observed in Human Age-Related Nuclear Cataracts Using Mie Scattering Theory. , 2007, 48, 303.		50
39	Evolution of graded refractive index in squid lenses. Journal of the Royal Society Interface, 2007, 4, 685-698.	3.4	49
40	Camouflage in marine fish. , 2011, , 186-211.		48
41	A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes. Journal of the Royal Society Interface, 2011, 8, 1386-1399.	3.4	48
42	Spectral sensitivity, spatial resolution, and temporal resolution and their implications for conspecific signalling in cleaner shrimp. Journal of Experimental Biology, 2016, 219, 597-608.	1.7	48
43	Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts. Experimental Eye Research, 2004, 79, 563-576.	2.6	46
44	The importance of color in mate choice of the blue crab <i>Callinectes sapidus</i> . Journal of Experimental Biology, 2009, 212, 3762-3768.	1.7	45
45	Comparative Morphology of the Concave Mirror Eyes of Scallops (Pectinoidea)*. American Malacological Bulletin, 2008, 26, 27-33.	0.2	43
46	Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans. Journal of Experimental Biology, 2012, 215, 3344-3353.	1.7	39
47	Computational visual ecology in the pelagic realm. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130038.	4.0	39
48	Underwater linear polarization: physical limitations to biological functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 649-654.	4.0	38
49	A field test of the Hamilton–Zuk hypothesis in the Trinidadian guppy (Poecilia reticulata). Behavioral Ecology and Sociobiology, 2007, 61, 1897-1909.	1.4	37
50	Diverse nanostructures underlie thin ultra-black scales in butterflies. Nature Communications, 2020, 11, 1294.	12.8	36
51	Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands. Journal of Experimental Biology, 2012, 215, 3335-3343.	1.7	34
52	Bioluminescence in the Deep-Sea Cirrate Octopod Stauroteuthis syrtensis Verrill (Mollusca:) Tj ETQq0 0 0 rgBT /	Overlock I	10 Tf 50 142 ⁻
53	Lifting the Cloak of Invisibility: The Effects of Changing Optical Conditions on Pelagic Crypsis. Integrative and Comparative Biology, 2003, 43, 580-590.	2.0	33

54	Intramuscular crossed connective tissue fibres: skeletal support in the lateral fins of squid and cuttlefish (Mollusca: Cephalopoda). Journal of Zoology, 1993, 231, 311-338.		1.7	32
----	---	--	-----	----

#	Article	IF	CITATIONS
55	Freezing behaviour facilitates bioelectric crypsis in cuttlefish faced with predation risk. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151886.	2.6	32
56	Ultra-black Camouflage in Deep-Sea Fishes. Current Biology, 2020, 30, 3470-3476.e3.	3.9	32
57	Von Uexküll Revisited: Addressing Human Biases in the Study of Animal Perception. Integrative and Comparative Biology, 2019, 59, 1451-1462.	2.0	31
58	Spectral sensitivity of the concave mirror eyes of scallops: potential influences of habitat, self-screening and longitudinal chromatic aberration. Journal of Experimental Biology, 2011, 214, 422-431.	1.7	30
59	Comparative visual acuity of coleoid cephalopods. Integrative and Comparative Biology, 2007, 47, 808-814.	2.0	29
60	Extraocular, Non-Visual, and Simple Photoreceptors: An Introduction to the Symposium. Integrative and Comparative Biology, 2016, 56, 758-763.	2.0	29
61	Spectral sensitivity in ray-finned fishes: diversity, ecology, and shared descent. Journal of Experimental Biology, 2018, 221, .	1.7	29
62	Polarisation signals: a new currency for communication. Journal of Experimental Biology, 2019, 222, .	1.7	29
63	Weaponry, color, and contest success in the jumping spider Lyssomanes viridis. Behavioural Processes, 2012, 89, 203-211.	1.1	27
64	Modelling fish colour constancy, and the implications for vision and signalling in water. Journal of Experimental Biology, 2016, 219, 1884-92.	1.7	27
65	Polarization sensitivity in the red swamp crayfish Procambarus clarkii enhances the detection of moving transparent objects. Journal of Experimental Biology, 2006, 209, 1612-1616.	1.7	26
66	Ultrastructural analysis of the human lens fiber cell remodeling zone and the initiation of cellular compaction. Experimental Eye Research, 2013, 116, 411-418.	2.6	26
67	Aposematic signals in North American black widows are more conspicuous to predators than to prey. Behavioral Ecology, 2016, 27, 1104-1112.	2.2	26
68	Multiple origins of green coloration in frogs mediated by a novel biliverdin-binding serpin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18574-18581.	7.1	26
69	Identification and Localization of a Possible Rhodopsin in the Echinoderms Asterias forbesi (Asteroidea) and Ophioderma brevispinum (Ophiuroidea). Biological Bulletin, 1997, 193, 97-105.	1.8	25
70	Scallops visually respond to the size and speed of virtual particles. Journal of Experimental Biology, 2008, 211, 2066-2070.	1.7	25
71	Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye–Bueche theory. Experimental Eye Research, 2008, 86, 434-444.	2.6	24
72	Two eyes for two purposes: <i>in situ</i> evidence for asymmetric vision in the cockeyed squids <i>Histioteuthis heteropsis</i> and <i>Stigmatoteuthis dofleini</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160069.	4.0	24

#	Article	IF	CITATIONS
73	Downwelling spectral irradiance during evening twilight as a function of the lunar phase. Applied Optics, 2015, 54, B85.	1.8	23
74	Light-dependent magnetoreception: quantum catches and opponency mechanisms of possible photosensitive molecules. Journal of Experimental Biology, 2007, 210, 3171-3178.	1.7	22
75	Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts. Experimental Eye Research, 2010, 91, 881-889.	2.6	22
76	Eavesdropping on visual secrets. Evolutionary Ecology, 2013, 27, 1045-1068.	1.2	22
77	Gray whales strand more often on days with increased levels of atmospheric radio-frequency noise. Current Biology, 2020, 30, R155-R156.	3.9	22
78	Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India. Experimental Eye Research, 2008, 87, 147-158.	2.6	21
79	Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts. Experimental Eye Research, 2012, 101, 72-81.	2.6	21
80	Nanostructures and Monolayers of Spheres Reduce Surface Reflections in Hyperiid Amphipods. Current Biology, 2016, 26, 3071-3076.	3.9	21
81	Candidate genes mediating magnetoreception in rainbow trout (<i>Oncorhynchus mykiss</i>). Biology Letters, 2017, 13, 20170142.	2.3	21
82	Animal navigation: a noisy magnetic sense?. Journal of Experimental Biology, 2020, 223, .	1.7	20
83	Light-emitting suckers in an octopus. Nature, 1999, 398, 113-114.	27.8	19
84	Ultraviolet vision and foraging in juvenile bluegill (Lepomis macrochirus). Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2183-2190.	1.4	19
85	Mutual visual signalling between the cleaner shrimp <i>Ancylomenes pedersoni</i> and its client fish. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180800.	2.6	19
86	The Effect of Depth on the Attachment Force of Limpets. Biological Bulletin, 1993, 184, 338-341.	1.8	18
87	Visual mutual assessment of size in male Lyssomanes viridis jumping spider contests. Behavioral Ecology, 2015, 26, 510-518.	2.2	18
88	Examining the Effects of Chromatic Aberration, Object Distance, and Eye Shape on Image-Formation in the Mirror-Based Eyes of the Bay Scallop <i>Argopecten irradians</i> . Integrative and Comparative Biology, 2016, 56, 796-808.	2.0	18
89	Using RGB displays to portray color realistic imagery to animal eyes. Environmental Epigenetics, 2017, 63, 27-34.	1.8	18
90	Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells. PLoS ONE, 2016, 11, e0160785.	2.5	17

#	Article	IF	CITATIONS
91	Extraocular Sensitivity to Polarized Light in an Echinoderm. Journal of Experimental Biology, 1994, 195, 281-291.	1.7	17
92	Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies. Molecular Vision, 2008, 14, 572-82.	1.1	17
93	The effects of salinity and temperature on the transparency of the grass shrimp <i>Palaemonetes pugio</i> . Journal of Experimental Biology, 2011, 214, 709-716.	1.7	16
94	A Unique Apposition Compound Eye in the Mesopelagic Hyperiid Amphipod Paraphronima gracilis. Current Biology, 2015, 25, 473-478.	3.9	16
95	Responses of hatchling sea turtles to rotational displacements. Journal of Experimental Marine Biology and Ecology, 2003, 288, 111-124.	1.5	15
96	The asymmetry of the underwater horizontal light field and its implications for mirrorâ€based camouflage in silvery pelagic fish. Limnology and Oceanography, 2014, 59, 1839-1852.	3.1	15
97	Orienting to polarized light at night—matching lunar skylight to performance in a nocturnal beetle. Journal of Experimental Biology, 2019, 222, .	1.7	15
98	Categorical colour perception occurs in both signalling and non-signalling colour ranges in a songbird. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190524.	2.6	15
99	Shade-seeking behaviour under polarized light by the brittlestar Ophioderma Brevispinum (Echinodermata: Ophiuroidea). Journal of the Marine Biological Association of the United Kingdom, 1999, 79, 761-763.	0.8	14
100	Polarization vision seldom increases the sighting distance of silvery fish. Current Biology, 2016, 26, R752-R754.	3.9	14
101	Light, Biological Receptors. , 2009, , 671-681.		13
102	Visual acuity in pelagic fishes and mollusks. Vision Research, 2013, 92, 1-9.	1.4	13
103	Pheromones exert top-down effects on visual recognition in the jumping spider Lyssomanes viridis. Journal of Experimental Biology, 2013, 216, 1744-56.	1.7	13
104	Cuttlefish see shape from shading, fine-tuning coloration in response to pictorial depth cues and directional illumination. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160062.	2.6	13
105	Coping with copepods: do right whales (<i>Eubalaena glacialis</i>) forage visually in dark waters?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160067.	4.0	13
106	Variation in rod spectral sensitivity of fishes is best predicted by habitat and depth. Journal of Fish Biology, 2019, 95, 179-185.	1.6	13
107	A dynamic broadband reflector built from microscopic silica spheres in the â€~disco' clam <i>Ctenoides ales</i> . Journal of the Royal Society Interface, 2014, 11, 20140407.	3.4	12
108	Behavioral responese- UVR avoidance and vison. Comprehensive Series in Photochemical and Photobiological Sciences, 0, , 455-482.	0.3	11

#	Article	IF	CITATIONS
109	Extraocular sensitivity to polarized light in an echinoderm. Journal of Experimental Biology, 1994, 195, 281-91.	1.7	11
110	The effect of aggregation on visibility in open water. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161463.	2.6	10
111	Effects of molting on the visual acuity of the blue crab, <i>Callinectes sapidus</i> . Journal of Experimental Biology, 2011, 214, 3055-3061.	1.7	9
112	Green sea turtle (Chelonia mydas) population history indicates important demographic changes near the mid-Pleistocene transition. Marine Biology, 2018, 165, 1.	1.5	9
113	Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182929.	2.6	9
114	Variation in carotenoid-containing retinal oil droplets correlates with variation in perception of carotenoid coloration. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	9
115	The sensory impacts of climate change: bathymetric shifts and visually mediated interactions in aquatic species. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210396.	2.6	9
116	Transparent anemone shrimp (<i>Ancylomenes pedersoni</i>) become opaque after exercise and physiological stress in correlation with increased hemolymph perfusion. Journal of Experimental Biology, 2017, 220, 4225-4233.	1.7	8
117	Studying the swift, smart, and shy: Unobtrusive camera-platforms for observing large deep-sea squid. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 172, 103538.	1.4	8
118	Immunological dependence of plant-dwelling animals on the medicinal properties of their plant substrates: a preliminary test of a novel evolutionary hypothesis. Arthropod-Plant Interactions, 2015, 9, 437-446.	1.1	7
119	Detection of magnetic field properties using distributed sensing: a computational neuroscience approach. Bioinspiration and Biomimetics, 2017, 12, 036013.	2.9	7
120	Open Questions: We don't really know anything, do we? Open questions in sensory biology. BMC Biology, 2017, 15, 43.	3.8	7
121	De novo transcriptomics reveal distinct phototransduction signaling components in the retina and skin of a color-changing vertebrate, the hogfish (Lachnolaimus maximus). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 475-485.	1.6	7
122	Comparison of Categorical Color Perception in Two Estrildid Finches. American Naturalist, 2021, 197, 190-202.	2.1	7
123	Damage Due to Solar Ultraviolet Radiation in the Brittlestar Ophioderma Brevispinum (Echinodermata: Ophiuroidea). Journal of the Marine Biological Association of the United Kingdom, 1998, 78, 681-684.	0.8	6
124	Orientation to Objects in the Sea Urchin <i>Strongylocentrotus purpuratus</i> Depends on Apparent and Not Actual Object Size. Biological Bulletin, 2011, 220, 86-88.	1.8	6
125	Evidence that eye-facing photophores serve as a reference for counterillumination in an order of deep-sea fishes. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192918.	2.6	6
126	Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens. Molecular Vision, 2013, 19, 2352-9.	1.1	6

#	Article	IF	CITATIONS
127	Environmental sources of radio frequency noise: potential impacts on magnetoreception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 83-95.	1.6	6
128	Does new technology inspire new directions? Examples drawn from pelagic visual ecology. Integrative and Comparative Biology, 2007, 47, 799-807.	2.0	5
129	Disentangling the visual cues used by a jumping spider to locate its microhabitat. Journal of Experimental Biology, 2016, 219, 2396-401.	1.7	5
130	Unmapped sequencing reads identify additional candidate genes linked to magnetoreception in rainbow trout. Environmental Biology of Fishes, 2018, 101, 711-721.	1.0	5
131	Visual perception of light organ patterns in deepâ€sea shrimps and implications for conspecific recognition. Ecology and Evolution, 2020, 10, 9503-9513.	1.9	5
132	Effect of a magnetic pulse on orientation behavior in rainbow trout (Oncorhynchus mykiss). Behavioural Processes, 2020, 172, 104058.	1.1	5
133	Light and Visual Environments. , 2020, , 4-30.		5
134	Near absence of differential gene expression in the retina of rainbow trout after exposure to a magnetic pulse: implications for magnetoreception. Biology Letters, 2018, 14, 20180209.	2.3	4
135	Pulse magnetization elicits differential gene expression in the central nervous system of the Caribbean spiny lobster, Panulirus argus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 725-742.	1.6	4
136	Influence of visual background on discrimination of signal-relevant colours in zebra finches (<i>Taeniopygia guttata</i>). Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	4
137	Comment on "Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments― Science, 2016, 353, 552-552.	12.6	3
138	Cuttlefish Sepia officinalis Preferentially Respond to Bottom Rather than Side Stimuli When Not Allowed Adjacent to Tank Walls. PLoS ONE, 2015, 10, e0138690.	2.5	3
139	Novel mitochondrial derived Nuclear Excisosome degrades nuclei during differentiation of prosimian Galago (bush baby) monkey lenses. PLoS ONE, 2020, 15, e0241631.	2.5	3
140	Testosterone, signal coloration, and signal color perception in male zebra finch contests. Ethology, 2022, 128, 131-142.	1.1	3
141	Sönke Johnsen. Current Biology, 2012, 22, R6-R7.	3.9	2
142	Core–shell nanospheres behind the blue eyes of the bay scallop Argopecten irradians. Journal of the Royal Society Interface, 2019, 16, 20190383.	3.4	2
143	The visual ecology of selective predation: Are unhealthy hosts less stealthy hosts?. Ecology and Evolution, 2021, 11, 18591-18603.	1.9	2
144	Orientation in Pill Bugs: An Interdisciplinary Activity to Engage Students in Concepts of Biology, Physics & Circular Statistics. American Biology Teacher, 2018, 80, 608-618.	0.2	1

#	Article	IF	CITATIONS
145	The cleaner shrimp Lysmata amboinensis adjusts its behaviour towards predatory versus non-predatory clients. Biology Letters, 2019, 15, 20190534.	2.3	1
146	The orbital hoods of snapping shrimp have surface features that may represent tradeoffs between vision and protection. Arthropod Structure and Development, 2021, 61, 101025.	1.4	1
147	Macropinna. Current Biology, 2022, 32, R256-R257.	3.9	1
148	An inner ear magneto-receptor?. Physics Today, 2009, 62, 14-14.	0.3	0
149	A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes. Journal of the Royal Society Interface, 2012, 9, 600-600.	3.4	0
150	Visual cognition in deep-sea cephalopods: what we don't know and why we don't know it. , 0, , 223-241.		0
151	Ultra-Black Deep-Sea Fishes. Optics and Photonics News, 2020, 31, 52.	0.5	0