
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wettability alteration using functionalized nanoparticles with tailored adhesion to the rock surface for condensate banking mitigation. Canadian Journal of Chemical Engineering, 2022, 100, 1265-1284.	1.7	2
2	Amineâ€Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane. Advanced Materials, 2022, 34, e2105690.	21.0	59
3	Carbon Nanotubesâ€Based Electrocatalysts: Structural Regulation, Support Effect, and Synchrotronâ€Based Characterization. Advanced Functional Materials, 2022, 32, 2106684.	14.9	14
4	An experimental and theoretical investigation on structure-property correlation of Cu2Mn1Al1â^'xGax full-Heusler alloy. Journal of Alloys and Compounds, 2022, 898, 162865.	5.5	2
5	Stability of oxygenated groups on pristine and defective diamond surfaces. MRS Advances, 2022, 7, 543-546.	0.9	1
6	Exfoliation of black phosphorus in isopropanol-water cosolvents. Journal of Molecular Structure, 2022, 1260, 132862.	3.6	2
7	Substitution of copper atoms into defect-rich molybdenum sulfides and their electrocatalytic activity. Nanoscale Advances, 2021, 3, 1747-1757.	4.6	3
8	Oxygenation of Diamond Surfaces via Hummer's Method. Chemistry of Materials, 2021, 33, 4977-4987.	6.7	4
9	Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7, .	10.3	32
10	Luminescent hybrid biocomposite films derived from animal skin waste. Carbon Trends, 2021, 4, 100059.	3.0	5
11	Designing a sustainable fluorescent targeting probe for superselective nucleus imaging. Carbon, 2021, 180, 48-55.	10.3	31
12	Three-dimensional printing of complex graphite structures. Carbon, 2021, 181, 260-269.	10.3	10
13	Apparent Ferromagnetism in Exfoliated Ultrathin Pyrite Sheets. Journal of Physical Chemistry C, 2021, 125, 18927-18935.	3.1	30
14	Structure, Properties and Applications of Twoâ€Dimensional Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2101589.	21.0	239
15	Magnetite-Functionalized Plumbagin for Therapeutic Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 1361-1372.	6.7	4
16	Gasâ€Phase Fluorination of Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2106084.	21.0	10
17	Cu-Pd Bimetal and CuPt Alloy Nanotubes Derived From Cu Nanowires: Novel Amplification Media for Surface-Enhanced Raman Spectroscopy. IEEE Sensors Journal, 2020, 20, 143-148.	4.7	3
18	Facile synthesis of highly fluorescent free-standing films comprising graphitic carbon nitride (g-C ₃ N ₄) nanolayers. New Journal of Chemistry, 2020, 44, 2644-2651.	2.8	29

#	Article	IF	CITATIONS
19	Complementary behaviour of EDL and HER activity in functionalized graphene nanoplatelets. Nanoscale, 2020, 12, 1790-1800.	5.6	10
20	Facile construction of a hybrid artificial protective layer for stable lithium metal anode. Chemical Engineering Journal, 2020, 391, 123542.	12.7	25
21	A universal strategy to separate hydrophilic hybrid-light carbon quantum dots using pure water as eluent. Applied Materials Today, 2020, 18, 100528.	4.3	10
22	Stable lithium metal anode enabled by an artificial multi-phase composite protective film. Journal of Power Sources, 2020, 448, 227547.	7.8	30
23	Full-color fluorescent carbon quantum dots. Science Advances, 2020, 6, .	10.3	344
24	Scaleâ€Enhanced Magnetism in Exfoliated Atomically Thin Magnetite Sheets. Small, 2020, 16, e2004208.	10.0	15
25	Sustainable Synthesis of Nâ€Doped Hollow Porous Carbon Spheres via a Sprayâ€Drying Method for Lithium‧ulfur Storage with Ultralong Cycle Life. Batteries and Supercaps, 2020, 3, 1201-1208.	4.7	25
26	Rational Design of Niâ€Based Electrocatalysts by Modulation of Iron Ions and Carbon Nanotubes for Enhanced Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000227.	5.3	4
27	Multifunctional Bioâ€Nanocomposite Coatings for Perishable Fruits. Advanced Materials, 2020, 32, e1908291.	21.0	97
28	Improving the Catalytic Activity of Carbon‣upported Single Atom Catalysts by Polynary Metal or Heteroatom Doping. Small, 2020, 16, e1906782.	10.0	124
29	Shear exfoliation synthesis of large-scale graphene-reinforced nanofibers. Carbon, 2020, 166, 405-413.	10.3	9
30	Extraction of Two-Dimensional Aluminum Alloys from Decagonal Quasicrystals. ACS Nano, 2020, 14, 7435-7443.	14.6	19
31	Formation of multifunctional ZrO2–MgO-hBN nanocomposite for enhanced bone regeneration and E coli bacteria filtration applications. Ceramics International, 2020, 46, 23006-23020.	4.8	10
32	Revealing the effect of phosphorus doping on Co@carbon in boosting oxygen evolution catalytic activity. Journal of Alloys and Compounds, 2020, 843, 156001.	5.5	8
33	White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horizons, 2020, 5, 928-933.	8.0	47
34	Bioâ€Nanocomposite Coatings: Multifunctional Bioâ€Nanocomposite Coatings for Perishable Fruits (Adv.) Tj ETQ	2q0 0 0 rg 21.0	BT ₃ /Overlock

35	Microcomputed tomography–based characterization of advanced materials: a review. Materials Today Advances, 2020, 8, 100084.	5.2	64
36	A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nature Communications, 2020, 11, 927.	12.8	93

#	Article	IF	CITATIONS
37	Influence of channel thickness on charge transport behavior of multi-layer indium selenide (InSe) field-effect transistors. 2D Materials, 2020, 7, 025030.	4.4	7
38	Ultra-low density three-dimensional nano-silicon carbide architecture with high temperature resistance and mechanical strength. Carbon, 2020, 164, 143-149.	10.3	3
39	Nature inspired solid–liquid phase amphibious adhesive. Soft Matter, 2020, 16, 5854-5860.	2.7	3
40	Flexible planar supercapacitors by straightforward filtration and laser processing steps. Nanotechnology, 2020, 31, 495403.	2.6	4
41	Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots. Materials Today, 2019, 22, 17-24.	14.2	12
42	Sustainable Synthesis of Bright Green Fluorescent Nitrogenâ€Doped Carbon Quantum Dots from Alkali Lignin. ChemSusChem, 2019, 12, 4202-4210.	6.8	92
43	Asphaltene-Derived Metal-Free Carbons for Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 27697-27705.	8.0	9
44	Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C3N4 for highly sensitive SERS sensing of organic pollutants. Journal of Hazardous Materials, 2019, 379, 120823.	12.4	47
45	Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Research, 2019, 12, 2894-2899.	10.4	27
46	Atomic Ru Immobilized on Porous h-BN through Simple Vacuum Filtration for Highly Active and Selective CO ₂ Methanation. ACS Catalysis, 2019, 9, 10077-10086.	11.2	93
47	Tuning the Electrocatalytic Activity of Co ₃ O ₄ through Discrete Elemental Doping. ACS Applied Materials & Interfaces, 2019, 11, 39706-39714.	8.0	21
48	Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures. Journal of Materials Chemistry C, 2019, 7, 1927-1933.	5.5	3
49	Gate-Induced Metal–Insulator Transition in 2D van der Waals Layers of Copper Indium Selenide Based Field-Effect Transistors. ACS Nano, 2019, 13, 13413-13420.	14.6	20
50	Metal Nanoparticles as Green Catalysts. Materials, 2019, 12, 3602.	2.9	109
51	Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction. Nano Letters, 2019, 19, 6765-6771.	9.1	2
52	Etching of transition metal dichalcogenide monolayers into nanoribbon arrays. Nanoscale Horizons, 2019, 4, 689-696.	8.0	11
53	Doping Nanoscale Graphene Domains Improves Magnetism in Hexagonal Boron Nitride. Advanced Materials, 2019, 31, e1805778.	21.0	69
54	Elastic and â€~transparent bone' as an electrochemical separator. Materials Today Chemistry, 2019, 12, 132-138.	3.5	6

#	Article	IF	CITATIONS
55	<i>Boxception</i> : Impact Resistance Structure Using 3D Printing. Advanced Engineering Materials, 2019, 21, 1900167.	3.5	12
56	Electric Double Layer Field-Effect Transistors Using Two-Dimensional (2D) Layers of Copper Indium Selenide (CuIn7Se11). Electronics (Switzerland), 2019, 8, 645.	3.1	10
57	Highâ€Lithiumâ€Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1901640.	21.0	217
58	Fiber Reinforced Layered Dielectric Nanocomposite. Advanced Functional Materials, 2019, 29, 1900056.	14.9	64
59	Low Contact Barrier in 2H/1T′ MoTe ₂ In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2019, 11, 12777-12785.	8.0	70
60	Rational Design of Oxygen-Enriched Carbon Dots with Efficient Room-Temperature Phosphorescent Properties and High-Tech Security Protection Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 19918-19924.	6.7	47
61	Atomically thin gallium layers from solid-melt exfoliation. Science Advances, 2018, 4, e1701373.	10.3	157
62	Liquid Exfoliation of Icosahedral Quasicrystals. Advanced Functional Materials, 2018, 28, 1801181.	14.9	21
63	Nitrogen-rich carbon nano-onions for oxygen reduction reaction. Carbon, 2018, 130, 645-651.	10.3	90
64	Mechanical Properties of Ultralow Density Graphene Oxide/Polydimethylsiloxane Foams. MRS Advances, 2018, 3, 61-66.	0.9	2
65	Carbon nanotube conditioning part 1—effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes. Nanotechnology, 2018, 29, 045701.	2.6	3
66	A fast and zero-biased photodetector based on GaTe–InSe vertical 2D p–n heterojunction. 2D Materials, 2018, 5, 025008.	4.4	81
67	High stiffness polymer composite with tunable transparency. Materials Today, 2018, 21, 475-482.	14.2	27
68	Origamiâ€Inspired 3D Interconnected Molybdenum Carbide Nanoflakes. Advanced Materials Interfaces, 2018, 5, 1701113.	3.7	13
69	A Study of Vertical Transport through Graphene toward Control of Quantum Tunneling. Nano Letters, 2018, 18, 682-688.	9.1	13
70	High efficiency electrochemical reduction of CO ₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 10313-10319.	10.3	92
71	MOF-74 derived porous hybrid metal oxide hollow nanowires for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 8396-8404.	10.3	101
72	Consolidation of functionalized graphene at ambient temperature via mechano-chemistry. Carbon, 2018, 134, 491-499.	10.3	22

#	Article	IF	CITATIONS
73	Fast photoresponse and high detectivity in copper indium selenide (CuIn 7 Se 11) phototransistors. 2D Materials, 2018, 5, 015001.	4.4	24
74	Atomic Layered Titanium Sulfide Quantum Dots as Electrocatalysts for Enhanced Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1700895.	3.7	30
75	Graphene Oxide Epoxy (GOâ€xy): GO as Epoxy Adhesive by Interfacial Reaction of Functionalities. Advanced Materials Interfaces, 2018, 5, 1700657.	3.7	19
76	Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites. Advanced Materials, 2018, 30, 1704820.	21.0	76
77	2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220, 379-385.	20.2	231
78	Temperature and Substrate Dependent Conductivities of CVD Graphene measured by Terahertz Time-Domain Spectroscopy. , 2018, , .		0
79	Near-Field Coupled Integrable Two-Dimensional InSe Photosensor on Optical Fiber. ACS Nano, 2018, 12, 12571-12577.	14.6	19
80	Quaternary Alloys: Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870344.	21.0	2
81	Soft-Lithographic Patterning of Luminescent Carbon Nanodots Derived from Collagen Waste. ACS Applied Materials & Interfaces, 2018, 10, 36275-36283.	8.0	24
82	Magnetic Properties and Photocatalytic Applications of 2D Sheets of Nonlayered Manganese Telluride by Liquid Exfoliation. ACS Applied Nano Materials, 2018, 1, 6427-6434.	5.0	33
83	Interconnecting Bone Nanoparticles by Ovalbumin Molecules to Build a Three-Dimensional Low-Density and Tough Material. ACS Applied Materials & Interfaces, 2018, 10, 41757-41762.	8.0	9
84	Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys. Advanced Materials, 2018, 30, e1804218.	21.0	29
85	Maskless direct growth of carbon nanotube micropatterns on metallic substrates. Carbon, 2018, 140, 610-615.	10.3	4
86	A Scalable Approach to Dendriteâ€Free Lithium Anodes via Spontaneous Reduction of Spray oated Graphene Oxide Layers. Advanced Materials, 2018, 30, e1801213.	21.0	204
87	Effects of etchants in the transfer of chemical vapor deposited graphene. Journal of Applied Physics, 2018, 123, .	2.5	19
88	MoS ₂ –Carbon Nanotube Porous 3 D Network for Enhanced Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 2960-2966.	6.8	46
89	One Step Process for Infiltration of Magnetic Nanoparticles into CNT Arrays for Enhanced Field Emission. Advanced Materials Interfaces, 2018, 5, 1701631.	3.7	2
90	Chromiteen: A New 2D Oxide Magnetic Material from Natural Ore. Advanced Materials Interfaces, 2018, 5, 1800549.	3.7	36

#	Article	IF	CITATIONS
91	Exfoliation of a non-van der Waals material from iron ore hematite. Nature Nanotechnology, 2018, 13, 602-609.	31.5	295
92	A Non-van der Waals Two-Dimensional Material from Natural Titanium Mineral Ore Ilmenite. Chemistry of Materials, 2018, 30, 5923-5931.	6.7	82
93	Underwater adhesive using solid–liquid polymer mixes. Materials Today Chemistry, 2018, 9, 149-157.	3.5	25
94	Achieving Selfâ€Stiffening and Laser Healing by Interconnecting Graphene Oxide Sheets with Amineâ€Functionalized Ovalbumin. Advanced Materials Interfaces, 2018, 5, 1800932.	3.7	5
95	Poly-albumen: Bio-derived structural polymer from polymerized egg white. Materials Today Chemistry, 2018, 9, 73-79.	3.5	7
96	Synthesis and 3D Interconnected Nanostructured h-BN-Based Biocomposites by Low-Temperature Plasma Sintering: Bone Regeneration Applications. ACS Omega, 2018, 3, 6013-6021.	3.5	24
97	High photoresponse of individual WS2 nanowire-nanoflake hybrid materials. Applied Physics Letters, 2018, 112, .	3.3	7
98	Growth of Molybdenum Carbide–Graphene Hybrids from Molybdenum Disulfide Atomic Layer Template. Advanced Materials Interfaces, 2017, 4, 1600866.	3.7	14
99	Facile Synthesis of 3D Anode Assembly with Si Nanoparticles Sealed in Highly Pure Few Layer Graphene Deposited on Porous Current Collector for Long Life Liâ€Ion Battery. Advanced Materials Interfaces, 2017, 4, 1601043.	3.7	65
100	High Toughness in Ultralow Density Graphene Oxide Foam. Advanced Materials Interfaces, 2017, 4, 1700030.	3.7	20
101	Reversible Formation of gâ€C ₃ N ₄ 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Roomâ€Temperature Gasâ€Sensing Properties. Advanced Functional Materials, 2017, 27, 1700653.	14.9	90
102	Direct growth of MoS ₂ single crystals on polyimide substrates. 2D Materials, 2017, 4, 021028.	4.4	39
103	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ Zâ€6cheme Catalysts. Advanced Energ Materials, 2017, 7, 1700025.	y 19.5	664
104	Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. Nanoscale, 2017, 9, 6991-6997.	5.6	36
105	Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. Nano Research, 2017, 10, 2405-2414.	10.4	8
106	Structural Reinforcement through Liquid Encapsulation. Advanced Materials Interfaces, 2017, 4, 1600781.	3.7	8
107	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	5.8	153
108	Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides. Advanced Materials, 2017, 29, 1700364.	21.0	61

#	Article	IF	CITATIONS
109	Hydrogels: Reversible Formation of gâ€C ₃ N ₄ 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Roomâ€Temperature Gasâ€Sensing Properties (Adv. Funct. Mater.) Tj ETQq1	10 .1⁄489 /314	rgBT /Overla
110	Chemically interconnected light-weight 3D-carbon nanotube solid network. Carbon, 2017, 119, 142-149.	10.3	20
111	Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Research, 2017, 10, 2386-2394.	10.4	124
112	Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications. ACS Applied Materials & Interfaces, 2017, 9, 13742-13750.	8.0	24
113	Selfâ€Stiffening Behavior of Reinforced Carbon Nanotubes Spheres. Advanced Engineering Materials, 2017, 19, 1600756.	3.5	8
114	A novel electroluminescent device based on a reduced graphene oxide wrapped phosphor (ZnS:Cu,Al) and hexagonal-boron nitride for high-performance luminescence. Nanoscale, 2017, 9, 5002-5008.	5.6	17
115	Enhancing Mechanical Properties of Nanocomposites Using Interconnected Carbon Nanotubes (<i>i</i> CNT) as Reinforcement. Advanced Engineering Materials, 2017, 19, 1600499.	3.5	7
116	2D Heterostructure coatings of <i>h</i> BN-MoS ₂ layers for corrosion resistance. Journal Physics D: Applied Physics, 2017, 50, 045301.	2.8	19
117	Giant Terahertz-Wave Absorption by Monolayer Graphene in a Total Internal Reflection Geometry. ACS Photonics, 2017, 4, 121-126.	6.6	52
118	Role of Atomic Layer Functionalization in Building Scalable Bottom-Up Assembly of Ultra-Low Density Multifunctional Three-Dimensional Nanostructures. ACS Nano, 2017, 11, 806-813.	14.6	14
119	Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. Chemistry of Materials, 2017, 29, 7431-7439.	6.7	27
120	Acetonitrile mediated facile synthesis and self-assembly of silver vanadate nanowires into 3D spongy-like structure as a cathode material for lithium ion battery. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	9
121	Photoemission Electron Microscopy as a New Tool to Study the Electronic Properties of 2D Crystals and Inhomogeneous Semiconductors. Microscopy and Microanalysis, 2017, 23, 1504-1505.	0.4	0
122	2D Materials: Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap (Adv.) Tj ETQq0 0	0 rgBT/Ov	erlock 10 Tf
123	Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene. Small, 2017, 13, 1701471.	10.0	221
124	Negative Differential Conductance & Hot-Carrier Avalanching in Monolayer WS2 FETs. Scientific Reports, 2017, 7, 11256.	3.3	18
125	Bacteria as Bio-Template for 3D Carbon Nanotube Architectures. Scientific Reports, 2017, 7, 9855.	3.3	21
	Experimental Determination of the Ionization Energies of MoSecsub 22/sub 22/sub 22/sub 22/sub 22/sub		

Experimental Determination of the Ionization Energies of MoSe₂, WS₂, and126MoS₂ on SiO₂ Using Photoemission Electron Microscopy. ACS Nano, 2017, 11,14.6698223-8230.

#	Article	IF	CITATIONS
127	Gold Nanoparticles and g ₃ N ₄ â€Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017, 27, 1701714.	14.9	129
128	Nature Inspired Strategy to Enhance Mechanical Properties via Liquid Reinforcement. Advanced Materials Interfaces, 2017, 4, 1700240.	3.7	30
129	Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Advanced Materials, 2017, 29, 1702457.	21.0	186
130	Self-optimizing, highly surface-active layeredÂmetal dichalcogenide catalysts for hydrogen evolution. Nature Energy, 2017, 2, .	39.5	336
131	Lightweight Hexagonal Boron Nitride Foam for CO ₂ Absorption. ACS Nano, 2017, 11, 8944-8952.	14.6	56
132	Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide. Scientific Reports, 2017, 7, 1774.	3.3	62
133	Effect of Fe substitution by Co on off-stoichiometric Ni–Fe–Co–Mn–Sn Heusler alloy ribbons. Materials Research Express, 2017, 4, 086507.	1.6	5
134	Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. Science Advances, 2017, 3, e1701500.	10.3	91
135	Energy Storage: Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene (Small 42/2017). Small, 2017, 13. Layer dependence of the electronic band alignment of few-layer <mml:math< td=""><td>10.0</td><td>2</td></mml:math<>	10.0	2
136	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Si</mml:mi><mml:msub><mml:mi< td=""><td>3.2</td><td>35</td></mml:mi<></mml:msub></mml:mrow></mml:math 	3.2	35
137	mathvariant="normal">O <mml:mn>2</mml:mn> Characterization of tin(II) sulfide defects/vacancies and correlation with their photocurrent. Nano Research, 2017, 10, 218-228.	10.4	8
138	Imaging the motion of electrons across semiconductor heterojunctions. Nature Nanotechnology, 2017, 12, 36-40.	31.5	124
139	On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Scientific Reports, 2017, 7, 16594.	3.3	30
140	Structural and Magnetic Properties of Rapidly Solidified Ni ₄₅ Fe ₅ Mn ₄₀ Sn ₁₀ Alloy Ribbon. Journal of Advanced Physics, 2017, 6, 389-396.	0.4	3
141	Imaging electron motion in 2D semiconductor heterojunctions. , 2017, , .		0
142	Synthesis of Millimeter cale Transition Metal Dichalcogenides Single Crystals. Advanced Functional Materials, 2016, 26, 2009-2015.	14.9	152
143	Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small, 2016, 12, 2741-2749.	10.0	128
144	Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 2016, 45, 19194-19215.	3.3	228

#	Article	IF	CITATIONS
145	Temperature programmed desorption measurements of oxygen molecules in 2D materials using laser terahertz emission microscopy. , 2016, , .		0
146	A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 2016, 7, 13869.	12.8	505
147	Parallel plate waveguide terahertz time domain spectroscopy for 2D materials. , 2016, , .		0
148	Reduced graphene oxide and gel polymer based thin film supercapacitor. , 2016, , .		0
149	Parallel plate waveguide time domain spectroscopy to study terahertz conductivity of utltrathin materials. Proceedings of SPIE, 2016, , .	0.8	1
150	Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nature Nanotechnology, 2016, 11, 633-638.	31.5	292
151	A generic approach for mechano-chemical reactions between carbonnanotubes of different functionalities. Carbon, 2016, 104, 196-202.	10.3	15
152	Probing low-density carriers in a single atomic layer using terahertz parallel-plate waveguides. Optics Express, 2016, 24, 3885.	3.4	7
153	Highly ordered carbon-based nanospheres with high stiffness. Carbon, 2016, 105, 144-150.	10.3	8
154	Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. Nano Letters, 2016, 16, 3314-3320.	9.1	122
155	The structural and dynamical aspects of boron nitride nanotubes under high velocity impacts. Physical Chemistry Chemical Physics, 2016, 18, 14776-14781.	2.8	15
156	Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon, 2016, 110, 27-33.	10.3	22
157	Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors. RSC Advances, 2016, 6, 87888-87896.	3.6	43
158	Thermally Assisted Nonvolatile Memory in Monolayer MoS ₂ Transistors. Nano Letters, 2016, 16, 6445-6451.	9.1	47
159	Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS ₂ Transistors. ACS Nano, 2016, 10, 9730-9737.	14.6	26
160	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie - International Edition, 2016, 55, 10656-10661.	13.8	27
161	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie, 2016, 128, 10814-10819.	2.0	17
162	Synthesis of ultralow density 3D graphene–CNT foams using a two-step method. Nanoscale, 2016, 8, 15857-15863.	5.6	43

#	Article	IF	CITATIONS
163	Spiral Growth of SnSe ₂ Crystals by Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600383.	3.7	55
164	Ballistic Fracturing of Carbon Nanotubes. ACS Applied Materials & amp; Interfaces, 2016, 8, 24819-24825.	8.0	16
165	Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 1117-1123.	2.2	10
166	Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals. Scientific Reports, 2016, 6, 22620.	3.3	42
167	Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes. Scientific Reports, 2016, 6, 32401.	3.3	29
168	Tuning the Electrochemical Reactivity of Boron―and Nitrogen‣ubstituted Graphene. Advanced Materials, 2016, 28, 6239-6246.	21.0	107
169	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy, 2016, 27, 138-146.	16.0	379
170	Three-Dimensional Porous Sponges from Collagen Biowastes. ACS Applied Materials & Interfaces, 2016, 8, 14836-14844.	8.0	29
171	Layer Engineering of 2D Semiconductor Junctions. Advanced Materials, 2016, 28, 5126-5132.	21.0	63
172	Defects Engineered Monolayer MoS ₂ for Improved Hydrogen Evolution Reaction. Nano Letters, 2016, 16, 1097-1103.	9.1	1,015
173	Strain Rate Dependent Shear Plasticity in Graphite Oxide. Nano Letters, 2016, 16, 1127-1131.	9.1	36
174	Incorporation of Nitrogen Defects for Efficient Reduction of CO ₂ via Two-Electron Pathway on Three-Dimensional Graphene Foam. Nano Letters, 2016, 16, 466-470.	9.1	435
175	Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry. Nature Nanotechnology, 2016, 11, 465-471.	31.5	197
176	Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells. Materials and Design, 2016, 92, 462-470.	7.0	27
177	Solid–Liquid Self-Adaptive Polymeric Composite. ACS Applied Materials & Interfaces, 2016, 8, 2142-2147.	8.0	6
178	Observing the Interplay Between Surface and Bulk Optical Nonlinearities in Thin Van Der Waals Crystals. , 2016, , .		0
179	Terahertz Parallel Plate Waveguide to Evaluate Electrical Transport Properties of 2D Materials. , 2016, , .		0
180	Evaluation of Local Adsorption Energy of Oxygen on Graphene using Laser THz Emission Spectroscopy. , 2016, , .		0

#	Article	IF	CITATIONS
181	Laser Terahertz Emission Spectroscopy of Graphene/InAs Junctions. Materials Research Society Symposia Proceedings, 2015, 1808, 1-7.	0.1	0
182	Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers. Scientific Reports, 2015, 5, 13710.	3.3	38
183	Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS ₂). Advanced Materials, 2015, 27, 4640-4648.	21.0	203
184	3D Reduced Graphene Oxide Coated V ₂ O ₅ Nanoribbon Scaffolds for High-Capacity Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2015, 32, 817-821.	2.3	49
185	Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale, 2015, 7, 11515-11519.	5.6	164
186	Fabrication of manganese oxide/three-dimensional reduced graphene oxide composites as the supercapacitors by a reverse microemulsion method. Carbon, 2015, 85, 249-260.	10.3	74
187	Density Variant Carbon Nanotube Interconnected Solids. Advanced Materials, 2015, 27, 1842-1850.	21.0	49
188	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	6.7	219
189	Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation. RSC Advances, 2015, 5, 19321-19328.	3.6	20
190	Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes. Nature Communications, 2015, 6, 7291.	12.8	35
191	High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. RSC Advances, 2015, 5, 51193-51200.	3.6	52
192	Two-Step Growth of Two-Dimensional WSe ₂ /MoSe ₂ Heterostructures. Nano Letters, 2015, 15, 6135-6141.	9.1	479
193	Conduction Mechanisms in CVD-Grown Monolayer MoS ₂ Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Letters, 2015, 15, 5052-5058.	9.1	92
194	3D Nanostructured Molybdenum Diselenide/Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 103-111.	5.2	107
195	Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 2015, 15, 5449-5454.	9.1	436
196	Scalable Transfer of Suspended Two-Dimensional Single Crystals. Nano Letters, 2015, 15, 5089-5097.	9.1	38
197	Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2015, 7, 14763-14769.	8.0	248
198	Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes. Nanotechnology, 2015, 26, 165201.	2.6	14

#	Article	IF	CITATIONS
199	Low interfacial contact resistance of Al-graphene composites via interface engineering. Nanotechnology, 2015, 26, 215603.	2.6	9
200	Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & amp; Interfaces, 2015, 7, 11991-12000.	8.0	120
201	An Atomically Layered InSe Avalanche Photodetector. Nano Letters, 2015, 15, 3048-3055.	9.1	253
202	Tellurium-Assisted Low-Temperature Synthesis of MoS ₂ and WS ₂ Monolayers. ACS Nano, 2015, 9, 11658-11666.	14.6	123
203	The Effect of Al Buffer Layer on the Catalytic Synthesis of Carbon Nanotube Forests. Topics in Catalysis, 2015, 58, 1112-1118.	2.8	8
204	Functionalized boron nitride porous solids. RSC Advances, 2015, 5, 93964-93968.	3.6	89
205	3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions. Nano Letters, 2015, 15, 5919-5925.	9.1	33
206	On the Interaction of Metal Nanoparticles with Supports. Topics in Catalysis, 2015, 58, 1127-1135.	2.8	5
207	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 19696-19701.	10.3	60
208	Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon, 2015, 85, 79-88.	10.3	141
209	Facile synthesis of nanostructured carbon materials over RANEY® nickel catalyst films printed on Al2O3 and SiO2 substrates. Journal of Materials Chemistry C, 2015, 3, 1823-1829.	5.5	2
210	Optoelectronic Memory Using Two-Dimensional Materials. Nano Letters, 2015, 15, 259-265.	9.1	163
211	Structured Reduced Graphene Oxide/Polymer Composites for Ultraâ€Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2015, 25, 559-566.	14.9	1,007
212	3D Macroporous Solids from Chemically Cross-linked Carbon Nanotubes. Small, 2015, 11, 688-693.	10.0	49
213	Synthesis and photocurrent of amorphous boron nanowires. Nanotechnology, 2014, 25, 335701.	2.6	16
214	Electrically tunable hot-silicon terahertz attenuator. Applied Physics Letters, 2014, 105, .	3.3	9
215	Ternary Culn ₇ Se ₁₁ : Towards Ultraâ€Thin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014, 26, 7666-7672.	21.0	43
216	Efficient Modulation of 1.55 μm Radiation with Gated Graphene on a Silicon Microring Resonator. Nano Letters, 2014, 14, 6811-6815.	9.1	137

#	Article	IF	CITATIONS
217	Electromechanical Properties of Polymer Electrolyteâ€Based Stretchable Supercapacitors. Advanced Energy Materials, 2014, 4, 1300844.	19.5	23
218	Boron Nitride–Graphene Nanocapacitor and the Origins of Anomalous Size-Dependent Increase of Capacitance. Nano Letters, 2014, 14, 1739-1744.	9.1	120
219	Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe ₂ . ACS Nano, 2014, 8, 5125-5131.	14.6	694
220	Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Letters, 2014, 14, 442-449.	9.1	463
221	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nature Communications, 2014, 5, 3193.	12.8	198
222	Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano, 2014, 8, 1263-1272.	14.6	534
223	CoMoO ₄ Nanoparticles Anchored on Reduced Graphene Oxide Nanocomposites as Anodes for Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20414-20422.	8.0	125
224	Effect of microwave irradiation on carbon nanotube fibers: exfoliation, structural change and strong light emission. RSC Advances, 2014, 4, 15502-15506.	3.6	3
225	Spiers Memorial Lecture : Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	3.2	24
226	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014, 5, 5246.	12.8	453
227	Enhanced Field Emission Properties from CNT Arrays Synthesized on Inconel Superalloy. ACS Applied Materials & Interfaces, 2014, 6, 1986-1991.	8.0	57
228	Field Emission with Ultralow Turn On Voltage from Metal Decorated Carbon Nanotubes. ACS Nano, 2014, 8, 7763-7770.	14.6	90
229	Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nature Communications, 2014, 5, 4541.	12.8	91
230	Universal ac conduction in large area atomic layers of CVD-grown MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2014, 89, .</mml:math 	3.2	27
231	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13, 1135-1142.	27.5	1,918
232	Ptâ€Decorated 3D Architectures Built from Graphene and Graphitic Carbon Nitride Nanosheets as Efficient Methanol Oxidation Catalysts. Advanced Materials, 2014, 26, 5160-5165.	21.0	354
233	High-Contrast Terahertz Wave Modulation by Gated Graphene Enhanced by Extraordinary Transmission through Ring Apertures. Nano Letters, 2014, 14, 1242-1248.	9.1	214
234	Unzipping Carbon Nanotubes at High Impact. Nano Letters, 2014, 14, 4131-4137.	9.1	63

#	Article	IF	CITATIONS
235	Anisotropically Functionalized Carbon Nanotube Array Based Hygroscopic Scaffolds. ACS Applied Materials & Interfaces, 2014, 6, 10608-10613.	8.0	30
236	A Bottomâ€Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. Advanced Functional Materials, 2014, 24, 125-130.	14.9	247
237	Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy. Scientific Reports, 2014, 4, 6046.	3.3	25
238	Covalently Interconnected Three-Dimensional Graphene Oxide Solids. ACS Nano, 2013, 7, 7034-7040.	14.6	233
239	Tunable Electronics in Large-Area Atomic Layers of Boron–Nitrogen–Carbon. Nano Letters, 2013, 13, 3476-3481.	9.1	65
240	Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene. Nano Letters, 2013, 13, 3698-3702.	9.1	238
241	Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nature Communications, 2013, 4, 2541.	12.8	536
242	Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances. ACS Nano, 2013, 7, 10380-10386.	14.6	124
243	Building 3D Structures of Vanadium Pentoxide Nanosheets and Application as Electrodes in Supercapacitors. Nano Letters, 2013, 13, 5408-5413.	9.1	343
244	Carbon Nanotube Core Graphitic Shell Hybrid Fibers. ACS Nano, 2013, 7, 10971-10977.	14.6	18
245	Thin micropatterned multi-walled carbon nanotube films for electrodes. Chemical Physics Letters, 2013, 583, 87-91.	2.6	15
246	Magnetic quantum ratchet effect in graphene. Nature Nanotechnology, 2013, 8, 104-107.	31.5	116
247	In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8, 119-124.	31.5	796
248	Direct Laserâ€Patterned Micro‣upercapacitors from Paintable MoS ₂ Films. Small, 2013, 9, 2905-2910.	10.0	455
249	Bottom-up Approach toward Single-Crystalline VO ₂ -Graphene Ribbons as Cathodes for Ultrafast Lithium Storage. Nano Letters, 2013, 13, 1596-1601.	9.1	263
250	Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Advanced Materials, 2013, 25, 2452-2456.	21.0	2,227
251	Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel. ACS Applied Materials & Interfaces, 2013, 5, 4129-4135.	8.0	234
252	Grapheneâ€Networkâ€Backboned Architectures for Highâ€Performance Lithium Storage. Advanced Materials, 2013, 25, 3979-3984.	21.0	253

#	Article	IF	CITATIONS
253	Hexagonal Boron Nitride and Graphite Oxide Reinforced Multifunctional Porous Cement Composites. Advanced Functional Materials, 2013, 23, 5624-5630.	14.9	129
254	Synthesis and Photoresponse of Large GaSe Atomic Layers. Nano Letters, 2013, 13, 2777-2781.	9.1	381
255	Science and Engineering of Nanomaterials. , 2013, , 1-36.		5
256	Terahertz emission from graphene-coated InP (100) surface. , 2013, , .		0
257	Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers. Nanotechnology, 2012, 23, 015703.	2.6	11
258	Preparation of highly oxidized nitrogen-doped carbon nanotubes. Nanotechnology, 2012, 23, 155601.	2.6	22
259	Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems. Proceedings of SPIE, 2012, , .	0.8	2
260	Water tribology on graphene. Nature Communications, 2012, 3, 1242.	12.8	64
261	Carbon Nanotube–Nanocup Hybrid Structures for High Power Supercapacitor Applications. Nano Letters, 2012, 12, 5616-5621.	9.1	164
262	Fabrication and characterization of single-walled carbon nanotube fiber for electronics applications. Carbon, 2012, 50, 5521-5524.	10.3	19
263	Synthesis of iron nanoparticles from hemoglobin and myoglobin. Nanotechnology, 2012, 23, 055602.	2.6	23
264	Synthesis of S-doped graphene by liquid precursor. Nanotechnology, 2012, 23, 275605.	2.6	169
265	Functionalized Multilayered Graphene Platform for Urea Sensor. ACS Nano, 2012, 6, 168-175.	14.6	154
266	In Situ Synthesis of Thermochemically Reduced Graphene Oxide Conducting Nanocomposites. Nano Letters, 2012, 12, 1789-1793.	9.1	109
267	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 2012, 2, 363.	3.3	329
268	Anomalous high capacitance in a coaxial single nanowire capacitor. Nature Communications, 2012, 3, 879.	12.8	45
269	Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Advanced Materials, 2012, 24, 5261-5266.	21.0	103
270	Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen. Advanced Materials, 2012, 24, 4878-4895.	21.0	219

#	Article	IF	CITATIONS
271	Synthesis of reduced graphene oxide–Fe3O4 multifunctional freestanding membranes and their temperature dependent electronic transport properties. Carbon, 2012, 50, 1338-1345.	10.3	87
272	A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon, 2012, 50, 4476-4482.	10.3	139
273	Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Scientific Reports, 2011, 1, 83.	3.3	305
274	Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen. ACS Nano, 2011, 5, 5025-5030.	14.6	137
275	Layer-by-layer assembly of TiO ₂ nanowire/carbon nanotube films and characterization of their photocatalytic activity. Nanotechnology, 2011, 22, 195701.	2.6	23
276	Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction. Journal of Physical Chemistry C, 2011, 115, 9403-9409.	3.1	163
277	Ultrathin Planar Graphene Supercapacitors. Nano Letters, 2011, 11, 1423-1427.	9.1	1,145
278	Spring-block approach for nanobristle patterns. Chemical Physics Letters, 2011, 511, 378-383.	2.6	7
279	A Review of Cooling in Microchannels. Heat Transfer Engineering, 2011, 32, 527-541.	1.9	125
280	Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6, 496-500.	31.5	1,322
281	Flexible ZnO–Cellulose Nanocomposite for Multisource Energy Conversion. Small, 2011, 7, 2173-2178.	10.0	73
282	The strain sensing and thermal–mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films. Carbon, 2011, 49, 3928-3936.	10.3	57
283	Ni filled flexible multi-walled carbon nanotube–polystyrene composite films as efficient microwave absorbers. Applied Physics Letters, 2011, 99, .	3.3	90
284	A review: controlled synthesis of vertically aligned carbon nanotubes. Carbon Letters, 2011, 12, 185-193.	5.9	18
285	MWCNTs as reinforcing agent to the Hap–Gel nanocomposite for artificial bone grafting. Journal of Biomedical Materials Research - Part A, 2010, 93A, 886-896.	4.0	8
286	Importance of Cr2O3 layer for growth of carbon nanotubes on superalloys. Carbon, 2010, 48, 844-853.	10.3	11
287	Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor. Small, 2010, 6, 1641-1646.	10.0	318
288	Carbon nanotube based sensors and fluctuation enhanced sensing. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1217-1221.	0.8	6

#	Article	IF	CITATIONS
289	INCREASING CHEMICAL SELECTIVITY OF CARBON NANOTUBE-BASED SENSORS BY FLUCTUATION-ENHANCED SENSING. Fluctuation and Noise Letters, 2010, 09, 277-287.	1.5	10
290	Low-Temperature Large-Scale Synthesis and Electrical Testing of Ultralong Copper Nanowires. Langmuir, 2010, 26, 16496-16502.	3.5	149
291	Electrical Transport and Field-Effect Transistors Using Inkjet-Printed SWCNT Films Having Different Functional Side Groups. ACS Nano, 2010, 4, 3318-3324.	14.6	79
292	Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes. ACS Nano, 2010, 4, 2003-2008.	14.6	72
293	Design and Reinforcement: Vertically Aligned Carbon Nanotube-Based Sandwich Composites. ACS Nano, 2010, 4, 6798-6804.	14.6	58
294	Synthesis of Catalytic Porous Metallic Nanorods by Galvanic Exchange Reaction. Journal of Physical Chemistry C, 2010, 114, 389-393.	3.1	80
295	Carbonâ€Nanotubeâ€Based Electrical Brush Contacts. Advanced Materials, 2009, 21, 2054-2058.	21.0	73
296	A General Synthetic Approach to Interconnected Nanowire/Nanotube and Nanotube/Nanowire/Nanotube Heterojunctions with Branched Topology. Angewandte Chemie - International Edition, 2009, 48, 7166-7170.	13.8	66
297	Synthesis and characterization of cobalt–nickel alloy nanowires. Journal of Materials Science, 2009, 44, 2271-2275.	3.7	38
298	Lüttinger Liquid to Al'tshulerâ^'Aronov Transition in Disordered, Many-Channel Carbon Nanotubes. ACS Nano, 2009, 3, 207-212.	14.6	11
299	Ionically Self-Assembled Polyelectrolyte-Based Carbon Nanotube Fibers. Chemistry of Materials, 2009, 21, 3062-3071.	6.7	32
300	Inkjet printed resistive and chemicalâ€FET carbon nanotube gas sensors. Physica Status Solidi (B): Basic Research, 2008, 245, 2335-2338.	1.5	23
301	Fluctuation enhanced gas sensing on functionalized carbon nanotube thin films. Physica Status Solidi (B): Basic Research, 2008, 245, 2339-2342.	1.5	9
302	Nanostructured VO ₂ Photocatalysts for Hydrogen Production. ACS Nano, 2008, 2, 1492-1496.	14.6	162
303	Thermal and electrical transport along MWCNT arrays grown on Inconel substrates. Journal of Materials Research, 2008, 23, 2099-2105.	2.6	25
304	Controlled CCVD Synthesis of Robust Multiwalled Carbon Nanotube Films. Journal of Physical Chemistry C, 2008, 112, 6723-6728.	3.1	28
305	Mechanisms for Catalytic CVD Growth of Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 6054-6064.	0.9	23
306	Thermal Resistance of the Interface Between Vertically Aligned Multiwalled Carbon Nanotube Arrays and Inconel and SiO2/Si Substrates. , 2008, , .		0

#	Article	IF	CITATIONS
307	Time and temperature dependence of multi-walled carbon nanotube growth on Inconel 600. Nanotechnology, 2008, 19, 045610.	2.6	47
308	Improving the performance of functionalized carbon nanotube thin film sensors by fluctuation enhanced sensing. , 2008, , .		1
309	Fluctuation-Enhanced Sensing: Status and Perspectives. IEEE Sensors Journal, 2008, 8, 714-719.	4.7	23
310	Controlled Ohmic and nonlinear electrical transport in inkjet-printed single-wall carbon nanotube films. Physical Review B, 2008, 77, .	3.2	40
311	The Generation of Domain Boundaries in Catalytically-Grown Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 2335-2342.	0.9	0
312	Chip cooling with integrated carbon nanotube microfin architectures. Applied Physics Letters, 2007, 90, 123105.	3.3	222
313	Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13574-13577.	7.1	1,032
314	Magnetic-Field Induced Efficient Alignment of Carbon Nanotubes in Aqueous Solutions. Chemistry of Materials, 2007, 19, 787-791.	6.7	61
315	First-Principles Study of Defect-Induced Magnetism in Carbon. Physical Review Letters, 2007, 99, 107201.	7.8	170
316	Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density. Journal of Physical Chemistry C, 2007, 111, 9077-9080.	3.1	69
317	Large Area-Aligned Arrays from Direct Deposition of Single-Wall Carbon Nanotube Inks. Journal of the American Chemical Society, 2007, 129, 10088-10089.	13.7	81
318	Variation of Radial Elasticity in Multiwalled Carbon Nanotubes. Nano Letters, 2007, 7, 3891-3894.	9.1	28
319	Room-Temperature Assembly of Germanium Photonic Crystals through Colloidal Crystal Templating. Chemistry of Materials, 2007, 19, 2102-2107.	6.7	39
320	The Role of Dislocations at the Catalystâ~'Wall Interface in Carbon Nanotube Growth. Journal of Physical Chemistry C, 2007, 111, 2623-2630.	3.1	4
321	Multifunctional Macroarchitectures of Double-Walled Carbon Nanotube Fibers. Advanced Materials, 2007, 19, 1719-1723.	21.0	52
322	Ultrathick Freestanding Aligned Carbon Nanotube Films. Advanced Materials, 2007, 19, 3300-3303.	21.0	136
323	Chemical Vapor Deposition of Organized Architectures of Carbon Nanotubes for Applications. , 2007, , 188-211.		3
324	Controlled Processes for Growth of Carbon Nanotube Structures. , 2007, , 1-13-1-13.		0

#	Article	IF	CITATIONS
325	Aligned Carbon Nanotubeâ^'Polymer Hybrid Architectures for Diverse Flexible Electronic Applications. Nano Letters, 2006, 6, 413-418.	9.1	306
326	Effect of ambient pressure on resistance and resistance fluctuations in single-wall carbon nanotube devices. Journal of Applied Physics, 2006, 100, 024315.	2.5	17
327	Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small, 2006, 2, 1021-1025.	10.0	479
328	Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotechnology, 2006, 1, 112-116.	31.5	416
329	lon irradiation induced structural modifications in diamond nanoparticles. Nanotechnology, 2006, 17, 305-309.	2.6	33
330	Multisegmented one-dimensional hybrid structures of carbon nanotubes and metal nanowires. Applied Physics Letters, 2006, 89, 243122.	3.3	39
331	Quantitative analysis of hysteresis in carbon nanotube field-effect devices. Applied Physics Letters, 2006, 89, 132118.	3.3	53
332	Stability of ion implanted single-walled carbon nanotubes: Thermogravimetric and Raman analysis. Journal of Applied Physics, 2006, 100, 064315.	2.5	18
333	Recovered Bandgap Absorption of Single-Walled Carbon Nanotubes in Acetone and Alcohols. Advanced Materials, 2005, 17, 147-150.	21.0	9
334	Synthetic Approaches for Carbon Nanotubes. , 2005, , 33-55.		1
335	The Role Played by Strain Fields, Dislocation Arrays, and Domain Boundaries During the Catalytic Synthesis of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
336	Flow-Induced Planar Assembly of Parallel Carbon Nanotubes and Crossed Nanotube Junctions. Journal of Nanoscience and Nanotechnology, 2005, 5, 1177-1180.	0.9	5
337	Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. Journal of Applied Physics, 2005, 98, 054309.	2.5	61
338	Ion-implantation-prepared catalyst nanoparticles for growth of carbon nanotubes. Applied Physics Letters, 2005, 86, 053104.	3.3	22
339	From The Cover: Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7074-7078.	7.1	286
340	Detecting harmful gases using fluctuation-enhanced sensing with Taguchi sensors. IEEE Sensors Journal, 2005, 5, 671-676.	4.7	35
341	Bottom-Up Growth of Carbon Nanotube Multilayers:Â Unprecedented Growth. Nano Letters, 2005, 5, 1997-2000.	9.1	130
342	Irradiation-Induced Magnetism in Carbon Nanostructures. Physical Review Letters, 2005, 95, 097201.	7.8	233

#	Article	IF	CITATIONS
343	Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2Nanostructures. Journal of Physical Chemistry B, 2005, 109, 20207-20214.	2.6	903
344	Room-temperature resonant tunneling of electrons in carbon nanotube junction quantum wells. Applied Physics Letters, 2005, 86, 183101.	3.3	21
345	Vertically aligned conductive carbon nanotube junctions and arrays for device applications. Applied Physics Letters, 2004, 84, 2889-2891.	3.3	8
346	Controlled growth of carbon nanotubes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2143-2160.	3.4	35
347	Carbon nanotube filters. Nature Materials, 2004, 3, 610-614.	27.5	584
348	Straightening Suspended Single Walled Carbon Nanotubes by Ion Irradiation. Nano Letters, 2004, 4, 1109-1113.	9.1	42
349	Density control of single-walled carbon nanotubes using patterned iron nanoparticle catalysts derived from phase-separated thin films of a polyferrocene block copolymerElectronic supplementary information (ESI) available: synthesis of PS-b-PFEMS, SWNT growth and characterization. See http://www.rsc.org/suppdata/im/b4/b403831b/. lournal of Materials Chemistry, 2004, 14, 1791.	6.7	113
350	Possibility of using carbon nanotubes as microactuators. , 2004, 5389, 159.		0
351	Mobility of Carbon Nanotubes in High Electric Fields. Journal of Nanoscience and Nanotechnology, 2004, 4, 69-71.	0.9	8
352	Building and testing organized architectures of carbon nanotubes. IEEE Nanotechnology Magazine, 2003, 2, 355-361.	2.0	17
353	Building Carbon Nanotubes and Their Smart Architectures. ChemInform, 2003, 34, no.	0.0	0
354	Sequence growth of carbon fibers and nanotube networks by CVD process. Carbon, 2003, 41, 185-188.	10.3	11
355	High-Density, Large-Area Single-Walled Carbon Nanotube Networks on Nanoscale Patterned Substrates. Journal of Physical Chemistry B, 2003, 107, 6859-6864.	2.6	72
356	Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition. Chemistry of Materials, 2003, 15, 1598-1606.	6.7	122
357	Mechanism of Selective Growth of Carbon Nanotubes on SiO2/Si Patterns. Nano Letters, 2003, 3, 561-564.	9.1	173
358	Thermal and Electrical Transport Measurements of Single-Walled Carbon Nanotube Strands. Materials Research Society Symposia Proceedings, 2003, 788, 5111.	0.1	0
359	Building and testing organized architectures of carbon nanotubes. , 2003, , .		1
360	Electrical behavior of isolated multiwall carbon nanotubes characterized by scanning surface potential microscopy. Applied Physics Letters, 2002, 81, 541-543.	3.3	14

#	Article	IF	CITATIONS
361	AFM-based Electrical Characterization of Nano-structures. Materials Research Society Symposia Proceedings, 2002, 738, 921.	0.1	0
362	Attenuation of Surface Acoustic Waves by Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	0
363	AFM-based Electrical Characterization of Nano-structures. Materials Research Society Symposia Proceedings, 2002, 761, 1.	0.1	0
364	Building carbon nanotubes and their smart architectures. Smart Materials and Structures, 2002, 11, 691-698.	3.5	47
365	Structural Characterizations of Long Single-Walled Carbon Nanotube Strands. Nano Letters, 2002, 2, 1105-1107.	9.1	63
366	Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science, 2002, 296, 884-886.	12.6	818
367	Massive Icosahedral Boron Carbide Crystals. Journal of Physical Chemistry B, 2002, 106, 5807-5809.	2.6	35
368	Growth of aligned carbon nanotubes on self-similar macroscopic templates. Applied Physics Letters, 2002, 81, 1297-1299.	3.3	16
369	Carbon nanotube network growth on palladium seeds. Materials Science and Engineering C, 2002, 19, 271-274.	7.3	22
370	Structural and transport properties of CdS films deposited on flexible substrates. Solid-State Electronics, 2002, 46, 1417-1420.	1.4	14
371	Organized assembly of carbon nanotubes. Nature, 2002, 416, 495-496.	27.8	477
372	Nickel deposition on porous silicon utilizing lasers. Applied Surface Science, 2002, 186, 232-236.	6.1	13
373	Simultaneous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 2002, 354, 264-268.	2.6	42
374	Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001, 79, 1172-1174.	3.3	1,133
375	Carbon Nanotube–Magnesium Oxide Cube Networks. Journal of Nanoscience and Nanotechnology, 2001, 1, 35-38.	0.9	24
376	Controlling the Aligned Growth of Carbon Nanotubes by Substrate Selection and Patterning. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
377	<title>Building and testing carbon nanotubes and their architectures</title> ., 2001, , .		0
378	New ways of chemical sensing via fluctuation spectroscopy. , 2001, , .		2

#	Article	IF	CITATIONS
379	Laser-assisted via hole metallization in PCB materials. Journal of Electronic Materials, 2001, 30, L21-L24.	2.2	11
380	Laser-assisted metal deposition from liquid-phase precursors on polymers. Applied Surface Science, 2001, 172, 178-189.	6.1	78
381	Palladium thin film deposition on polyimide by CW Ar+ laser radiation for electroless copper plating. Thin Solid Films, 2001, 384, 185-188.	1.8	42
382	Noise measurements and fluctuation analysis in nanoparticle films. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 131-136.	2.7	5
383	Select Pathways to Carbon Nanotube Film Growth. Advanced Materials, 2001, 13, 1767-1770.	21.0	21
384	Identifying natural and artificial odours through noise analysis with a sampling-and-hold electronic nose. Sensors and Actuators B: Chemical, 2001, 77, 312-315.	7.8	31
385	AFM-Based Surface Potential Measurements on Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
386	HIGH SIGNAL-TO-NOISE RATIO GAIN BY STOCHASTIC RESONANCE IN A DOUBLE WELL. Fluctuation and Noise Letters, 2001, 01, L181-L188.	1.5	53
387	Random walk in an eddy and tube formation from fine particles. Chaos, 2001, 11, 674-677.	2.5	1
388	HIGH SIGNAL-TO-NOISE RATIO GAIN BY STOCHASTIC RESONANCE IN A DOUBLE WELL. , 2001, , .		1
389	COLORED NOISE DRIVEN STOCHASTIC RESONANCE IN A DOUBLE WELL AND IN A FITZHUGH-NAGUMO NEURONAL MODEL. , 2001, , .		0
390	Select Pathways to Carbon Nanotube Film Growth. Advanced Materials, 2001, 13, 1767-1770.	21.0	0
391	Random walk in an eddy and nanotube self-assembly. AIP Conference Proceedings, 2000, , .	0.4	0
392	Signal-to-noise ratio gain by stochastic resonance in a bistable system. Chaos, Solitons and Fractals, 2000, 11, 1929-1932.	5.1	44
393	A self-adaptive stochastic resonator with logarithmic transfer. Chaos, Solitons and Fractals, 2000, 11, 1933-1935.	5.1	0
394	Palladium thin film deposition from liquid precursors on polymers by projected excimer beams. Applied Surface Science, 2000, 168, 66-70.	6.1	26
395	Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues. Sensors and Actuators B: Chemical, 2000, 71, 55-59.	7.8	149
396	Random walk in an eddy. AIP Conference Proceedings, 2000, , .	0.4	0

#	Article	IF	CITATIONS
397	Resistance fluctuation spectroscopy for chemical sensors and sensor systems. AIP Conference Proceedings, 2000, , .	0.4	3
398	Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods. Journal of Materials Research, 2000, 15, 2087-2090.	2.6	3
399	Charge diffusion noise in monocrystalline PbS nanoparticle films. Applied Physics Letters, 2000, 77, 3421-3422.	3.3	9
400	Electrical Properties of Nanocrystalline Tungsten Trioxide. Materials Research Society Symposia Proceedings, 1999, 581, 15.	0.1	7
401	Ultraviolet laser-induced liquid-phase palladium seeding on polymers. Journal of Materials Research, 1999, 14, 3690-3694.	2.6	14
402	UV-laser-induced etching and metal seeding on polymers; a surface characterization. Applied Surface Science, 1999, 138-139, 613-616.	6.1	4
403	Subpicosecond excimer laser ablation of thick gold films of ultra-fine particles generated by a gas deposition technique. Applied Physics A: Materials Science and Processing, 1999, 69, S385-S387.	2.3	0
404	Random Walk in Gas Vortices and Nanotube Self-Assembly. Physica Status Solidi (B): Basic Research, 1999, 214, r3-r4.	1.5	3
405	Subpicosecond excimer laser ablation of thick gold films of ultra-fine particles generated by a gas deposition technique. Applied Physics A: Materials Science and Processing, 1999, 69, S385-S387.	2.3	3
406	Direct measurement of the total reaction rate of OH in the atmosphere. Analusis - European Journal of Analytical Chemistry, 1999, 27, 328-336.	0.4	27
407	Ripple formation on GaAs surfaces by ultrafast (fs) laser pulses. , 1998, 3573, 124.		0
408	Structural changes in GaAs induced by ultrafast (fs) laser pulses. Journal of Materials Research, 1998, 13, 1808-1811.	2.6	2
409	Smooth vanadium-nitride layers created on silicon substrates by pulse laser deposition method. , 1998, , .		0
410	UV-Induced Fractal Surfaces. Fractals, 1997, 05, 275-280.	3.7	3
411	<title>Excimer-laser-induced oxidation of metals: instabilities</title> . , 1997, , .		0
412	Laser-induced oxidation of metals: state of the art. Thin Solid Films, 1997, 298, 160-164.	1.8	60
413	Nonlinear aspects of laser-driven oxidation of metals. Applied Surface Science, 1996, 106, 247-257.	6.1	8
414	Nonlinear dynamic of IR laser-induced surface processes. Infrared Physics and Technology, 1995, 36, 281-296.	2.9	5

#	Article	IF	CITATIONS
415	Fractal based surface characterization of laser treated polymer foils. Chaos, Solitons and Fractals, 1995, 5, 9-14.	5.1	3
416	Metal oxide layer growth under laser irradiation. Thin Solid Films, 1993, 227, 13-17.	1.8	10
417	Kinetics of oxide crystal growth in the transition regime between Cabrera-Mott and Wagner thickness regions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 173, 193-195.	5.6	9
418	Synergetic type surface formation in excimer laser irradiated polymers. Journal of Optics, 1992, 1, 141-144.	0.5	2
419	Mechanical properties of V2O5 polycrystals grown by laser light irradiation. Journal of Alloys and Compounds, 1992, 186, L1-L5.	5.5	3
420	Periodic nanostructures observed by STM on vanadium surface preilluminated with a cw Yag-laser. Superlattices and Microstructures, 1992, 11, 435-438.	3.1	8
421	Surface pecularities of vanadium oxides grown in the field of laser light. Applied Surface Science, 1992, 59, 201-206.	6.1	2
422	noise generated by scaled Brownian motion. Solid State Communications, 1989, 71, 765-767.	1.9	8
423	On the kinetics of laser-light-induced oxidation constants of vanadium. Journal of the Less Common Metals, 1989, 152, L23-L26.	0.8	6
424	Perspectives of CdS-Cu2S solar cells at high levels excitations. Solid-State Electronics, 1988, 31, 1505-1507.	1.4	2
425	Structural investigations and microhardness of metal oxide layer grown by CO2 laser light. Journal of the Less Common Metals, 1988, 142, 105-107.	0.8	3
426	Laser light stimulated oxidation of vanadium at nonuniform illumination. Superlattices and Microstructures, 1987, 3, 409-412.	3.1	7
427	Thermal transport measurements in multi-wall carbon nanotube strands using the 3w method. , 0, , .		3
428	Mechanism of TiO ₂ Nanotubes Formation on the Surface of Pure Ti and Ti-6Al-4V Alloy. Advanced Materials Research, 0, 939, 655-662.	0.3	6
429	COOLING WITH INTEGRATED CARBON NANOTUBE FILMS. , 0, , 83-95.		0
430	Stacked On-Chip Supercapacitors for Extreme Environments. Journal of Materials Chemistry A, 0, , .	10.3	3