
Deborah Charlesworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4282093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Some thoughts about the words we use for thinking about sex chromosome evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210314.	1.8	4
2	The mysterious sex chromosomes of haploid plants. Heredity, 2022, 129, 17-21.	1.2	6
3	Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nature Communications, 2022, 13, .	5.8	6
4	Chromosomeâ€scale assembly of the genome of <i>Salixdunnii</i> reveals a maleâ€heterogametic sex determination system on chromosome 7. Molecular Ecology Resources, 2021, 21, 1966-1982.	2.2	28
5	When and how do sexâ€linked regions become sex chromosomes?. Evolution; International Journal of Organic Evolution, 2021, 75, 569-581.	1.1	34
6	The puzzling guppy Y chromosome. Nature Reviews Genetics, 2021, 22, 480-481.	7.7	0
7	The timing of genetic degeneration of sex chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200093.	1.8	30
8	PromethION Sequencing and Assembly of the Genome of <i>Micropoecilia picta</i> , a Fish with a Highly Degenerated Y Chromosome. Genome Biology and Evolution, 2021, 13, .	1.1	4
9	How did the guppy Y chromosome evolve?. PLoS Genetics, 2021, 17, e1009704.	1.5	22
10	Evolution: Shape-shifting vole sex determination andÂsex chromosomes. Current Biology, 2021, 31, R967-R969.	1.8	0
11	Evolution: The oldest sex chromosomes. Current Biology, 2021, 31, R1585-R1588.	1.8	1
12	Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nature Communications, 2020, 11, 5893.	5.8	68
13	Locating the Sex Determining Region of Linkage Group 12 of Guppy (<i>Poecilia reticulata</i>). G3: Genes, Genomes, Genetics, 2020, 10, 3639-3649.	0.8	24
14	Using GC Content to Compare Recombination Patterns on the Sex Chromosomes and Autosomes of the Guppy, <i>Poecilia reticulata</i> , and Its Close Outgroup Species. Molecular Biology and Evolution, 2020, 37, 3550-3562.	3.5	27
15	Evolution: A New Idea about the Degeneration of Y and W Chromosomes. Current Biology, 2020, 30, R871-R873.	1.8	7
16	Improved Reference Genome Uncovers Novel Sex-Linked Regions in the Guppy (Poecilia reticulata). Genome Biology and Evolution, 2020, 12, 1789-1805.	1.1	36
17	Pleiotropic effects of sex-determining genes in the evolution of dioecy in two plant species. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191805.	1.2	28
18	Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Scientific Reports, 2019, 9, 1045.	1.6	29

#	Article	IF	CITATIONS
19	Reply to Wright et al.: How to explain the absence of extensive Y-specific regions in the guppy sex chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12609-12610.	3.3	8
20	Young sex chromosomes in plants and animals. New Phytologist, 2019, 224, 1095-1107.	3.5	73
21	Arms races with mitochondrial genome soft sweeps in a gynodioecious plant, <i>Plantago lanceolata</i> . Molecular Ecology, 2019, 28, 2772-2785.	2.0	3
22	Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proceedings of the United States of America, 2019, 116, 6924-6931.	3.3	97
23	The importance of the Neutral Theory in 1968 and 50 years on: A response to Kern and Hahn 2018. Evolution; International Journal of Organic Evolution, 2019, 73, 111-114.	1.1	123
24	Neutral Variation in the Context of Selection. Molecular Biology and Evolution, 2018, 35, 1359-1361.	3.5	16
25	Does sexual dimorphism in plants promote sex chromosome evolution?. Environmental and Experimental Botany, 2018, 146, 5-12.	2.0	27
26	Mogens Westergaard's Contributions to Understanding Sex Chromosomes. Genetics, 2018, 210, 1143-1149.	1.2	10
27	Has adaptation occurred in males and females since separate sexes evolved in the plant <i>Silene latifolia</i> ?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172824.	1.2	11
28	The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression. Genes, 2018, 9, 264.	1.0	34
29	The sources of adaptive variation. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162864.	1.2	174
30	Origins of rice cytoplasmic male sterility genes. Cell Research, 2017, 27, 3-4.	5.7	9
31	Sequence diversity patterns suggesting balancing selection in partially sexâ€linked genes of the plant <i>Silene latifolia</i> are not generated by demographic history or gene flow. Molecular Ecology, 2017, 26, 1357-1370.	2.0	17
32	Evolution of recombination rates between sex chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160456.	1.8	140
33	Hubby and Lewontin on Protein Variation in Natural Populations: When Molecular Genetics Came to the Rescue of Population Genetics. Genetics, 2016, 203, 1497-1503.	1.2	12
34	Evolution of sex-biased gene expression in a dioecious plant. Nature Plants, 2016, 2, 16168.	4.7	57
35	A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Scientific Reports, 2016, 6, 18917.	1.6	70
36	Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biology, 2016, 17, 230.	3.8	21

#	Article	IF	CITATIONS
37	The status of supergenes in the 21st century: recombination suppression in <scp>B</scp> atesian mimicry and sex chromosomes and other complex adaptations. Evolutionary Applications, 2016, 9, 74-90.	1.5	121
38	Plant Sex Chromosomes. Annual Review of Plant Biology, 2016, 67, 397-420.	8.6	135
39	Plant contributions to our understanding of sex chromosome evolution. New Phytologist, 2015, 208, 52-65.	3.5	110
40	Molecular Evolution: Breakthroughs and Mysteries in Batesian Mimicry. Current Biology, 2015, 25, R506-R508.	1.8	6
41	Gene Loss from a Plant Sex Chromosome System. Current Biology, 2015, 25, 1234-1240.	1.8	62
42	Origin and domestication of papaya Y ^h chromosome. Genome Research, 2015, 25, 524-533.	2.4	87
43	BREAKDOWN OF DIOECY: MODELS WHERE MALES ACQUIRE COSEXUAL FUNCTIONS. Evolution; International Journal of Organic Evolution, 2014, 68, 426-440.	1.1	41
44	THE EVOLUTIONARY DYNAMICS OF SEXUALLY ANTAGONISTIC MUTATIONS IN PSEUDOAUTOSOMAL REGIONS OF SEX CHROMOSOMES. Evolution; International Journal of Organic Evolution, 2014, 68, 1339-1350.	1.1	53
45	Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649). Oncotarget, 2014, 5, 8223-8234.	0.8	22
46	Expansion of the Pseudo-autosomal Region and Ongoing Recombination Suppression in the <i>Silene latifolia</i> Sex Chromosomes. Genetics, 2013, 194, 673-686.	1.2	78
47	Plant sex chromosome evolution. Journal of Experimental Botany, 2013, 64, 405-420.	2.4	154
48	Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata. Molecular Biology and Evolution, 2013, 30, 435-447.	3.5	55
49	Testing for the Footprint of Sexually Antagonistic Polymorphisms in the Pseudoautosomal Region of a Plant Sex Chromosome Pair. Genetics, 2013, 194, 663-672.	1.2	51
50	Rapid divergence and expansion of the X chromosome in papaya. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13716-13721.	3.3	52
51	Sequencing papaya X and Y ^h chromosomes reveals molecular basis of incipient sex chromosome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13710-13715.	3.3	264
52	THE POTENTIAL FOR SEXUALLY ANTAGONISTIC POLYMORPHISM IN DIFFERENT GENOME REGIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 505-516.	1.1	92
53	Multiple Nuclear Gene Phylogenetic Analysis of the Evolution of Dioecy and Sex Chromosomes in the Genus Silene. PLoS ONE, 2011, 6, e21915.	1.1	29
54	Reduced Efficacy of Natural Selection on Codon Usage Bias in Selfing Arabidopsis and Capsella Species. Genome Biology and Evolution, 2011, 3, 868-880.	1.1	85

#	Article	IF	CITATIONS
55	DOES LOCAL ADAPTATION CAUSE HIGH POPULATION DIFFERENTIATION OF SILENE LATIFOLIA Y CHROMOSOMES?. Evolution; International Journal of Organic Evolution, 2011, 65, 3368-3380.	1.1	13
56	About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends in Genetics, 2011, 27, 358-367.	2.9	184
57	Preservation of the Y Transcriptome in a 10-Million-Year-Old Plant Sex Chromosome System. Current Biology, 2011, 21, 1470-1474.	1.8	139
58	Mimicry: The Hunting of the Supergene. Current Biology, 2011, 21, R846-R848.	1.8	10
59	Evolutionary Biology: The Origins of Two Sexes. Current Biology, 2010, 20, R519-R521.	1.8	24
60	Nucleotide diversity in Silene latifolia autosomal and sex-linked genes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3283-3290.	1.2	38
61	The Birds and the Bees and the Flowers and the Trees: Lessons from Genetic Mapping of Sex Determination in Plants and Animals. Genetics, 2010, 186, 9-31.	1.2	171
62	Self-incompatibility. F1000 Biology Reports, 2010, 2, 68.	4.0	15
63	Darwin and Genetics. Genetics, 2009, 183, 757-766.	1.2	48
64	The genetics of inbreeding depression. Nature Reviews Genetics, 2009, 10, 783-796.	7.7	1,545
65	The evolution of restricted recombination in sex chromosomes. Trends in Ecology and Evolution, 2009, 24, 94-102.	4.2	354
66	Evidence for Degeneration of the Y Chromosome in the Dioecious Plant Silene latifolia. Current Biology, 2008, 18, 545-549.	1.8	123
67	Evolutionary Genetics: Changed Sex Determination in Honeybees. Current Biology, 2008, 18, R610-R612.	1.8	2
68	High DNA Sequence Diversity in Pericentromeric Genes of the Plant <i>Arabidopsis lyrata</i> . Genetics, 2008, 179, 985-995.	1.2	22
69	Competitive Centromeres. Science, 2008, 322, 1484-1485.	6.0	1
70	Patterns of Polymorphism and Demographic History in Natural Populations of Arabidopsis lyrata. PLoS ONE, 2008, 3, e2411.	1.1	163
71	Evolutionary Strata on the X Chromosomes of the Dioecious Plant Silene latifolia: Evidence From New Sex-Linked Genes. Genetics, 2007, 175, 1945-1954.	1.2	193
72	Linkage Disequilibrium and Recombination Rate Estimates in the Self-Incompatibility Region of Arabidopsis lyrata. Genetics, 2007, 176, 2357-2369.	1.2	43

#	Article	IF	CITATIONS
73	Early Events in the Evolution of the <i>Silene latifolia</i> Y Chromosome: Male Specialization and Recombination Arrest. Genetics, 2007, 177, 375-386.	1.2	44
74	Comparative gene mapping in Arabidopsis lyrata chromosomes 6 and 7 and A. thaliana chromosome IV: evolutionary history, rearrangements and local recombination rates. Genetical Research, 2006, 88, 45-56.	0.3	30
75	Evolution of Plant Breeding Systems. Current Biology, 2006, 16, R726-R735.	1.8	334
76	The Transition to Self-Compatibility in Arabidopsis thaliana and Evolution within S-Haplotypes over 10 Myr. Molecular Biology and Evolution, 2006, 23, 1741-1750.	3.5	154
77	Balancing Selection and Its Effects on Sequences in Nearby Genome Regions. PLoS Genetics, 2006, 2, e64.	1.5	560
78	Linkage Disequilibrium Between Incompatibility Locus Region Genes in the Plant Arabidopsis lyrata. Genetics, 2006, 173, 1057-1073.	1.2	35
79	Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 3011-3019.	1.2	249
80	Patterns of Nucleotide Polymorphism Distinguish Temperate and Tropical Wild Isolates of Caenorhabditis briggsae. Genetics, 2006, 173, 2021-2031.	1.2	100
81	Duplication of Centromeric Histone H3 (HTR12) Gene in Arabidopsis halleri and A. lyrata, Plant Species With Multiple Centromeric Satellite Sequences. Genetics, 2006, 174, 2021-2032.	1.2	36
82	Testing for Effects of Recombination Rate on Nucleotide Diversity in Natural Populations of Arabidopsis lyrata. Genetics, 2006, 174, 1421-1430.	1.2	64
83	Centromere Locations and Associated Chromosome Rearrangements in Arabidopsis lyrata and A. thaliana. Genetics, 2006, 173, 1613-1619.	1.2	32
84	Trans-specificity at Loci Near the Self-Incompatibility Loci in Arabidopsis. Genetics, 2006, 172, 2699-2704.	1.2	46
85	The inter-specific hybrid Silene latifoliaxS. viscosa reveals early events of sex chromosome evolution. Evolution & Development, 2005, 7, 327-336.	1.1	28
86	Plant selfâ€incompatibility systems: a molecular evolutionary perspective. New Phytologist, 2005, 168, 61-69.	3.5	136
87	Sex Chromosomes: Evolution of the Weird and Wonderful. Current Biology, 2005, 15, R129-R131.	1.8	57
88	Balancing Selection and Low Recombination Affect Diversity near the Self-Incompatibility Loci of the Plant Arabidopsis lyrata. Current Biology, 2005, 15, 1773-1778.	1.8	61
89	How and when didArabidopsis thaliana become highly self-fertilising. BioEssays, 2005, 27, 472-476.	1.2	46
90	Plant Evolution: Modern Sex Chromosomes. Current Biology, 2004, 14, R271-R273.	1.8	18

DEBORAH CHARLESWORTH

#	Article	IF	CITATIONS
91	Sex Determination: Balancing Selection in the Honey Bee. Current Biology, 2004, 14, R568-R569.	1.8	15
92	A Gradual Process of Recombination Restriction in the Evolutionary History of the Sex Chromosomes in Dioecious Plants. PLoS Biology, 2004, 3, e4.	2.6	198
93	Subdivision and haplotype structure in natural populations of Arabidopsis lyrata. Molecular Ecology, 2003, 12, 1247-1263.	2.0	131
94	Effects of inbreeding on the genetic diversity of populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1051-1070.	1.8	384
95	Haplotype Structure of the Stigmatic Self-Incompatibility Gene in Natural Populations of Arabidopsis lyrata. Molecular Biology and Evolution, 2003, 20, 1741-1753.	3.5	89
96	The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 99-125.	3.8	215
97	Duplicative Transfer of a MADS Box Gene to a Plant Y Chromosome. Molecular Biology and Evolution, 2003, 20, 1062-1069.	3.5	80
98	Diversity and Linkage of Genes in the Self-Incompatibility Gene Family in <i>Arabidopsis lyrata</i> . Genetics, 2003, 164, 1519-1535.	1.2	67
99	Rates and Patterns of Molecular Evolution in Inbred and Outbred Arabidopsis. Molecular Biology and Evolution, 2002, 19, 1407-1420.	3.5	180
100	Self-incompatibility: How to Stay Incompatible. Current Biology, 2002, 12, R424-R426.	1.8	34
101	Plant sex determination and sex chromosomes. Heredity, 2002, 88, 94-101.	1.2	380
102	Breeding systems and genome evolution. Current Opinion in Genetics and Development, 2001, 11, 685-690.	1.5	329
103	Analysis and Evolution of Two Functional Y-Linked Loci in a Plant Sex Chromosome System. Molecular Biology and Evolution, 2001, 18, 2162-2168.	3.5	97
104	DNA Diversity in Sex-Linked and Autosomal Genes of the Plant Species Silene latifolia and Silene dioica. Molecular Biology and Evolution, 2001, 18, 1442-1454.	3.5	67
105	Low Diversity and Divergence in the fil1 Gene Family of Antirrhinum (Scrophulariaceae). Journal of Molecular Evolution, 2001, 52, 171-181.	0.8	11
106	Identification and Characterization of a Polymorphic Receptor Kinase Gene Linked to the Self-Incompatibility Locus of <i>Arabidopsis lyrata</i> . Genetics, 2001, 158, 387-399.	1.2	142
107	The effect of subdivision on variation at multi-allelic loci under balancing selection. Genetical Research, 2000, 76, 51-62.	0.3	190
108	The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population. Genetical Research, 2000, 76, 63-73.	0.3	63

DEBORAH CHARLESWORTH

#	Article	IF	CITATIONS
109	Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature, 2000, 404, 388-390.	13.7	178
110	How Can Two-Gene Models of Self-Incompatibility Generate New Specificities?. Plant Cell, 2000, 12, 309-310.	3.1	41
111	The degeneration of Y chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1563-1572.	1.8	810
112	How was the Sdic gene fixed?. Nature, 1999, 400, 519-520.	13.7	24
113	Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genetical Research, 1999, 74, 165-178.	0.3	249
114	The genetic basis of inbreeding depression. Genetical Research, 1999, 74, 329-340.	0.3	627
115	Recombination and Selection at Brassica Self-Incompatibility Loci. Genetics, 1999, 152, 413-425.	1.2	71
116	DNA Polymorphism, Haplotype Structure and Balancing Selection in the Leavenworthia PgiC Locus. Genetics, 1999, 153, 1423-1434.	1.2	99
117	Some evolutionary consequences of deleterious mutations. Genetica, 1998, 102/103, 3-19.	0.5	129
118	An X-linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature, 1998, 393, 263-266.	13.7	132
119	Molecular Evolution and Adaptive Radiation. Edited by T. J. Givnish and K. J. Sytsma. Cambridge University Press. 1997. 621 pages. Price £65/\$105. ISBN 0 521 57329 7 Genetical Research, 1998, 71, 181-184	4. ^{0.3}	0
120	Rates of Spontaneous Mutation. Genetics, 1998, 148, 1667-1686.	1.2	1,672
121	The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genetical Research, 1997, 70, 155-174.	0.3	668
122	Point estimation and graphical inference of marginal dominance for two viability loci controlling inbreeding depression. Genetical Research, 1997, 70, 143-153.	0.3	14
123	Rapid fixation of deleterious alleles can be caused by Muller's ratchet. Genetical Research, 1997, 70, 63-73.	0.3	161
124	FLORAL SEX ALLOCATION IN SEQUENTIALLY BLOOMING PLANTS. Evolution; International Journal of Organic Evolution, 1995, 49, 70-79.	1.1	126
125	Multi-allelic self-incompatibility polymorphisms in plants. BioEssays, 1995, 17, 31-38.	1.2	26
126	Genetic variability of plant characters in the partial inbreeder <i>Collinsia heterophylla</i> (Scrophulariaceae). American Journal of Botany, 1995, 82, 112-120.	0.8	25

#	Article	IF	CITATIONS
127	Genetic Variability of Plant Characters in the Partial Inbreeder Collinsia heterophylla (Scrophulariaceae). American Journal of Botany, 1995, 82, 112.	0.8	16
128	Save the male. Current Biology, 1993, 3, 155-157.	1.8	10
129	The Evolution of the Selfing Rate in Functionally Hermaphrodite Plants and Animals. Annual Review of Ecology, Evolution, and Systematics, 1993, 24, 441-466.	6.7	394
130	GENETIC EVIDENCE FOR MULTIPLE ORIGINS OF DIOECY IN THE HAWAIIAN SHRUB <i>WIKSTROEMIA</i> (THYMELAEACEAE). Evolution; International Journal of Organic Evolution, 1992, 46, 207-215.	1.1	20
131	Why do plants produce so many more ovules than seeds?. Nature, 1989, 338, 21-22.	13.7	96
132	A high mutation rate in a long lived perennial plant. Nature, 1989, 340, 346-347.	13.7	10
133	Embryo and seed abortion in plants. Nature, 1989, 342, 625-626.	13.7	9
134	Genetic variation in recombination in Drosophila. III. Regional effects on crossing over and effects on non-disjunction. Heredity, 1985, 55, 209-221.	1.2	10
135	A Model for the Evolution of Dioecy and Gynodioecy. American Naturalist, 1978, 112, 975-997.	1.0	1,201
136	An experiment on recombination load in Drosophila melanogaster. Genetical Research, 1975, 25, 267-273.	0.3	50
137	The measurement of fitness and mutation rate in human populations. Annals of Human Genetics, 1973, 37, 175-187.	0.3	28
138	Selection of new inversions in multi-locus genetic systems. Genetical Research, 1973, 21, 167-183.	0.3	89
139	A STUDY OF LINKAGE DISEQUILIBRIUM IN POPULATIONS OF DROSOPHILA MELANOGASTER. Genetics, 1973, 73, 351-359.	1.2	65
140	Starchâ€gel electrophoresis of four enzymes from human red blood cells: glyceraldehydeâ€3â€phosphate dehydrogenase, fructoaldolase, glyoxalase II and sorbitol dehydrogenase. Annals of Human Genetics, 1972, 35, 477-484.	0.3	30
141	HAEMOGLOBIN KÃ-LN IN A JEWISH FAMILY. Journal of Internal Medicine, 1972, 191, 177-180.	2.7	2
142	Evolution of a Y Chromosome from an X Chromosome. SSRN Electronic Journal, 0, , .	0.4	4