
Henning Willers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4281470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chk2 Phosphorylation of BRCA1 Regulates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2004, 24, 708-718.	2.3	287
2	Basic Mechanisms of Therapeutic Resistance to Radiation and Chemotherapy in Lung Cancer. Cancer Journal (Sudbury, Mass), 2013, 19, 200-207.	2.0	160
3	Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Research, 2008, 36, 4088-4098.	14.5	139
4	Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncology, The, 2018, 19, e240-e251.	10.7	108
5	Utility of DNA Repair Protein Foci for the Detection of Putative BRCA1 Pathway Defects in Breast Cancer Biopsies. Molecular Cancer Research, 2009, 7, 1304-1309.	3.4	105
6	EGF Receptor Inhibition Radiosensitizes NSCLC Cells by Inducing Senescence in Cells Sustaining DNA Double-Strand Breaks. Cancer Research, 2011, 71, 6261-6269.	0.9	105
7	Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene, 2000, 19, 632-639.	5.9	100
8	Phase II Study of Proton-Based Stereotactic Body Radiation Therapy for Liver Metastases: Importance of Tumor Genotype. Journal of the National Cancer Institute, 2017, 109, .	6.3	82
9	Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway. Cancer Research, 2017, 77, 2018-2028.	0.9	80
10	Multi-Institutional Experience of Stereotactic Ablative Radiation Therapy for Stage I Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 97, 362-371.	0.8	78
11	Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation. International Journal of Radiation Oncology Biology Physics, 2015, 91, 1081-1089.	0.8	77
12	The Future of Radiobiology. Journal of the National Cancer Institute, 2018, 110, 329-340.	6.3	76
13	Effects of Charged Particles on Human Tumor Cells. Frontiers in Oncology, 2016, 6, 23.	2.8	75
14	Immunogenicity and Reactogenicity of SARS-CoV-2 Vaccines in Patients With Cancer: The CANVAX Cohort Study. Journal of Clinical Oncology, 2022, 40, 12-23.	1.6	75
15	Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non-small cell lung cancer treated with radiotherapy for brain metastases. Neuro-Oncology, 2015, 17, 296-302.	1.2	72
16	Toward A variable RBE for proton beam therapy. Radiotherapy and Oncology, 2018, 128, 68-75.	0.6	71
17	Racial and Ethnic Disparities Among Participants in Precision Oncology Clinical Studies. JAMA Network Open, 2021, 4, e2133205.	5.9	70
18	Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials. Clinical Cancer Research, 2016, 22, 3138-3147.	7.0	68

#	Article	IF	CITATIONS
19	Integrative Molecular Characterization of Resistance to Neoadjuvant Chemoradiation in Rectal Cancer. Clinical Cancer Research, 2019, 25, 5561-5571.	7.0	64
20	Hyperfractionation: where do we stand?. Radiotherapy and Oncology, 1997, 43, 1-21.	0.6	61
21	EGFR-Mediated Chromatin Condensation Protects KRAS-Mutant Cancer Cells against Ionizing Radiation. Cancer Research, 2014, 74, 2825-2834.	0.9	61
22	A Randomized Phase 2 Study of Pembrolizumab With or Without Radiation in Patients With Recurrent or Metastatic Adenoid Cystic Carcinoma. International Journal of Radiation Oncology Biology Physics, 2021, 109, 134-144.	0.8	61
23	Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene, 2005, 24, 1663-1672.	5.9	60
24	Disassembly of MDC1 Foci Is Controlled by Ubiquitin-Proteasome-dependent Degradation. Journal of Biological Chemistry, 2008, 283, 31608-31616.	3.4	60
25	DNA Damage Response Assessments in Human Tumor Samples Provide Functional Biomarkers of Radiosensitivity. Seminars in Radiation Oncology, 2015, 25, 237-250.	2.2	59
26	53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Research, 2015, 43, 1659-1670.	14.5	56
27	Introduction to Clinical Radiation Biology. Hematology/Oncology Clinics of North America, 2006, 20, 1-24.	2.2	54
28	Precision Oncology and Genomically Guided Radiation Therapy: A Report From the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference. International Journal of Radiation Oncology Biology Physics, 2018, 101, 274-284.	0.8	50
29	Detection of Impaired Homologous Recombination Repair in NSCLC Cells and Tissues. Journal of Thoracic Oncology, 2013, 8, 279-286.	1.1	46
30	Integration of Stereotactic Body Radiation Therapy With Tyrosine Kinase Inhibitors in Stage IV Oncogene-Driven Lung Cancer. Oncologist, 2016, 21, 964-973.	3.7	45
31	PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53. Oncogene, 2018, 37, 2793-2805.	5.9	42
32	Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Reports, 2019, 27, 3422-3432.e4.	6.4	42
33	Radioresistance of KRAS/TP53â€mutated lung cancer can be overcome by radiation dose escalation or EGFR tyrosine kinase inhibition in vivo. International Journal of Cancer, 2020, 147, 472-477.	5.1	36
34	EGFR-Activating Mutations Correlate with a Fanconi Anemia–like Cellular Phenotype That Includes PARP Inhibitor Sensitivity. Cancer Research, 2013, 73, 6254-6263.	0.9	35
35	Modelling variable proton relative biological effectiveness for treatment planning. British Journal of Radiology, 2020, 93, 20190334.	2.2	35
36	Adapting a Drug Screening Platform to Discover Associations of Molecular Targeted Radiosensitizers with Genomic Biomarkers. Molecular Cancer Research, 2015, 13, 713-720.	3.4	34

#	Article	IF	CITATIONS
37	Disruption of SLX4-MUS81 Function IncreasesÂthe Relative Biological Effectiveness of Proton Radiation. International Journal of Radiation Oncology Biology Physics, 2016, 95, 78-85.	0.8	33
38	Patient-Specific Tumor Growth Trajectories Determine Persistent and Resistant Cancer Cell Populations during Treatment with Targeted Therapies. Cancer Research, 2019, 79, 3776-3788.	0.9	32
39	A Contralateral Esophagus-Sparing Technique to Limit Severe Esophagitis Associated With Concurrent High-Dose Radiation and Chemotherapy in Patients With Thoracic Malignancies. International Journal of Radiation Oncology Biology Physics, 2015, 92, 803-810.	0.8	30
40	Fanconi Anemia pathway heterogeneity revealed by cisplatin and oxaliplatin treatments. Cancer Letters, 2010, 292, 73-79.	7.2	29
41	Multi-criteria optimization achieves superior normal tissue sparing in a planning study of intensity-modulated radiation therapy for RTOG 1308-eligible non-small cell lung cancer patients. Radiotherapy and Oncology, 2016, 118, 515-520.	0.6	28
42	Integrated, Multidisciplinary Management of Pulmonary Nodules Can Streamline Care and Improve Adherence to Recommendations. Oncologist, 2020, 25, 431-437.	3.7	27
43	Comment on "Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis" (I). Science, 2003, 302, 1894c-1894.	12.6	26
44	Pre-treatment neutrophil-lymphocyte ratio is associated with overall mortality in localized non-small cell lung cancer treated with stereotactic body radiotherapy. Radiotherapy and Oncology, 2019, 134, 151-157.	0.6	23
45	FANCD2-deficient human fibroblasts are hypersensitive to ionising radiation at oxygen concentrations of 0% and 3% but not under normoxic conditions. International Journal of Radiation Biology, 2009, 85, 523-531.	1.8	22
46	Biomarkers and Mechanisms of FANCD2 Function. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-8.	3.0	18
47	Differential inflammatory response dynamics in normal lung following stereotactic body radiation therapy with protons versus photons. Radiotherapy and Oncology, 2019, 136, 169-175.	0.6	18
48	ATR-p53 Restricts Homologous Recombination in Response to Replicative Stress but Does Not Limit DNA Interstrand Crosslink Repair in Lung Cancer Cells. PLoS ONE, 2011, 6, e23053.	2.5	18
49	FANCD2 but not FANCA promotes cellular resistance to type II topoisomerase poisons. Cancer Letters, 2011, 305, 86-93.	7.2	16
50	ACR Appropriateness Criteria® Radiation Therapy for Small-Cell Lung Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2013, 36, 206-213.	1.3	16
51	Assessment of a Contralateral Esophagus–Sparing Technique in Locally Advanced Lung Cancer Treated With High-Dose Chemoradiation. JAMA Oncology, 2021, 7, 910.	7.1	16
52	High-dose Radiation Therapy alone for Inoperable Non-small cell Lung Cancer: Experience with Prolonged Overall Treatment Times. Acta Oncológica, 1998, 37, 101-105.	1.8	14
53	A common Chk1-dependent phenotype of DNA double-strand break suppression in two distinct radioresistant cancer types. Breast Cancer Research and Treatment, 2019, 174, 605-613.	2.5	14
54	Multidisciplinary Management ofÂSmall Cell Lung Cancer. Surgical Oncology Clinics of North America, 2013, 22, 329-343.	1.5	13

#	Article	IF	CITATIONS
55	Pre-clinical imaging for establishment and comparison of orthotopic non-small cell lung carcinoma: in search for models reflecting clinical scenarios. British Journal of Radiology, 2019, 92, 20180539.	2.2	12
56	ACR Appropriateness Criteria® Induction and Adjuvant Therapy for N2 Non–small-cell Lung Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2015, 38, 197-205.	1.3	11
57	Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Scientific Reports, 2021, 11, 3656.	3.3	10
58	Screening and Validation of Molecular Targeted Radiosensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e63-e74.	0.8	10
59	Toward a New Framework for Clinical Radiation Biology. Hematology/Oncology Clinics of North America, 2019, 33, 929-945.	2.2	8
60	The ASCENT trial: A phase II study of neoadjuvant afatinib, chemoradiation and surgery for stage III EGFR mutation-positive NSCLC Journal of Clinical Oncology, 2018, 36, 8544-8544.	1.6	8
61	Heterogeneous immunogenicity of SARS-CoV-2 vaccines in cancer patients receiving radiotherapy. Radiotherapy and Oncology, 2021, 166, 88-91.	0.6	8
62	Targeting Homologous Recombination Repair in Cancer. , 2012, , 119-160.		7
63	Modeling Resistance and Recurrence Patterns of Combined Targeted–Chemoradiotherapy Predicts Benefit of Shorter Induction Period. Cancer Research, 2020, 80, 5121-5133.	0.9	7
64	Phase Ib study of neoadjuvant chemoradiation (CRT) with midostaurin, 5-fluorouracil (5-FU) and radiation (XRT) for locally advanced rectal cancer: Sensitization of RAS mutant tumors Journal of Clinical Oncology, 2018, 36, e15674-e15674.	1.6	7
65	A randomized phase II study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma Journal of Clinical Oncology, 2019, 37, 6082-6082.	1.6	6
66	Utility of Noncancerous Chest CT Features for Predicting Overall Survival and Noncancer Death in Patients With Stage I Lung Cancer Treated With Stereotactic Body Radiotherapy. American Journal of Roentgenology, 2022, 219, 579-589.	2.2	6
67	Early experience with hippocampal avoidance whole brain radiation therapy and simultaneous integrated boost for brain metastases. Journal of Neuro-Oncology, 2020, 148, 81-88.	2.9	5
68	Moving Beyond the Standard of Care: Accelerate Testing of Radiation-Drug Combinations. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1131-1139.	0.8	5
69	Towards an Integrated Understanding of Epidermal Growth Factor Receptor Biology for Radiation Therapy: Integrins Enter. Journal of the National Cancer Institute, 2015, 107, dju440-dju440.	6.3	4
70	Low Rates of Chest Wall Toxicity When Individualizing the Planning Target Volume Margin in Patients With Early Stage Lung Cancer Treated With Stereotactic Body Radiation Therapy. Practical Radiation Oncology, 2021, 11, e282-e291.	2.1	4
71	Racial and ethnic disparities among participants in precision oncology clinical studies Journal of Clinical Oncology, 2021, 39, 3014-3014.	1.6	4
72	Intracranial Activity of Gefitinib and Capmatinib inÂaÂPatient with Previously Treated Non–Small Cell Lung Cancer Harboring a Concurrent EGFR Mutation and MET Amplification. Journal of Thoracic Oncology, 2020, 15, e8-e10.	1.1	3

#	Article	IF	CITATIONS
73	Incidence of Radiation Therapy Among Patients Enrolled in a Multidisciplinary Pulmonary Nodule and Lung Cancer Screening Clinic. JAMA Network Open, 2022, 5, e224840.	5.9	3
74	Baby Steps in the Right Direction: Toward a Parental Leave Policy for Gastroenterology Fellows. American Journal of Gastroenterology, 2021, 116, 2300-2300.	0.4	2
75	Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protocols, 2021, 2, 100391.	1.2	2
76	Translation of DNA Damage Response Inhibitors as Chemoradiation Sensitizers From the Laboratory to the Clinic. International Journal of Radiation Oncology Biology Physics, 2021, 111, e38-e53.	0.8	2
77	Immune-related adverse events (IRAEs) in metastatic lung cancer patients receiving PD-1/PD-L1 inhibitors and thoracic radiotherapy Journal of Clinical Oncology, 2017, 35, 9079-9079.	1.6	2
78	TP53 mutation status: emerging biomarker for precision radiation medicine?. Oncoscience, 2018, 5, 258-259.	2.2	2
79	Genomic evolution and acquired resistance to preoperative chemoradiation therapy (CRT) in rectal cancer Journal of Clinical Oncology, 2018, 36, 613-613.	1.6	2
80	Introduction to Molecular Targeted Radiosensitizers: Opportunities and Challenges. Cancer Drug Discovery and Development, 2020, , 1-16.	0.4	2
81	Pre-treatment serum bicarbonate predicts for primary tumor control after stereotactic body radiation therapy in patients with localized non-small cell lung cancer. Radiotherapy and Oncology, 2019, 140, 26-33.	0.6	1
82	Mechanisms and Markers of Clinical Radioresistance. Cancer Drug Discovery and Development, 2020, , 63-96.	0.4	1
83	Multifocal adenocarcinoma of the lung: Factors predictive for local therapy Journal of Clinical Oncology, 2017, 35, e20041-e20041.	1.6	1
84	Targeting PARP for Chemoradiosensitization: Opportunities, Challenges, and the Road Ahead. International Journal of Radiation Oncology Biology Physics, 2022, 112, 265-270.	0.8	1
85	Recent trends of "manels―and gender representation among panelists at the ASCO annual meeting Journal of Clinical Oncology, 2022, 40, 11053-11053.	1.6	0