Trevor M Penning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Expression of Genes Converting Adrenal Androgens to Testosterone in Androgen-Independent Prostate Cancer. Cancer Research, 2006, 66, 2815-2825.	0.9	967
2	Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 2015, 88, 108-146.	2.9	661
3	Comparative anatomy of the aldo–keto reductase superfamily. Biochemical Journal, 1997, 326, 625-636.	3.7	585
4	Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1–AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochemical Journal, 2000, 351, 67-77.	3.7	516
5	Dihydrodiol Dehydrogenases and Polycyclic Aromatic Hydrocarbon Activation:  Generation of Reactive and Redox Active o-Quinones. Chemical Research in Toxicology, 1999, 12, 1-18.	3.3	437
6	Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1‒AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochemical Journal, 2000, 351, 67.	3.7	403
7	The aldo-keto reductases (AKRs): Overview. Chemico-Biological Interactions, 2015, 234, 236-246.	4.0	348
8	A new nomenclature for the aldo-keto reductase superfamily. Biochemical Pharmacology, 1997, 54, 639-647.	4.4	346
9	Aldo-Keto Reductases and Bioactivation/Detoxication. Annual Review of Pharmacology and Toxicology, 2007, 47, 263-292.	9.4	334
10	The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biological Interactions, 2009, 178, 94-98.	4.0	329
11	Molecular Endocrinology of Hydroxysteroid Dehydrogenases*. Endocrine Reviews, 1997, 18, 281-305.	20.1	324
12	The Biochemical Basis for Increased Testosterone Production in Theca Cells Propagated from Patients with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5925-5933.	3.6	297
13	Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis, 2009, 30, 1571-1580.	2.8	273
14	Clustering a Chemical Inventory for Safety Assessment of Fragrance Ingredients: Identifying Read-Across Analogs to Address Data Gaps. Chemical Research in Toxicology, 2020, 33, 1709-1718.	3.3	273
15	The aldo-keto reductase superfamily homepage. Chemico-Biological Interactions, 2003, 143-144, 621-631.	4.0	265
16	Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends in Endocrinology and Metabolism, 2010, 21, 315-324.	7.1	248
17	Human Cytosolic 3α-Hydroxysteroid Dehydrogenases of the Aldo-keto Reductase Superfamily Display Significant 3β-Hydroxysteroid Dehydrogenase Activity. Journal of Biological Chemistry, 2004, 279, 10784-10795.	3.4	241
18	Human aldo–keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Archives of Biochemistry and Biophysics, 2007, 464, 241-250.	3.0	235

#	Article	IF	CITATIONS
19	Intense Androgen-Deprivation Therapy With Abiraterone Acetate Plus Leuprolide Acetate in Patients With Localized High-Risk Prostate Cancer: Results of a Randomized Phase II Neoadjuvant Study. Journal of Clinical Oncology, 2014, 32, 3705-3715.	1.6	220
20	Generation of Reactive Oxygen Species during the Enzymatic Oxidation of Polycyclic Aromatic Hydrocarbon trans-Dihydrodiols Catalyzed by Dihydrodiol Dehydrogenase. Chemical Research in Toxicology, 1996, 9, 84-92.	3.3	213
21	Activation of Polycyclic Aromatic Hydrocarbontrans-Dihydrodiol Proximate Carcinogens by Human Aldo-keto Reductase (AKR1C) Enzymes and Their Functional Overexpression in Human Lung Carcinoma (A549) Cells. Journal of Biological Chemistry, 2002, 277, 24799-24808.	3.4	197
22	Expression and Characterization of Recombinant Type 2 3α-Hydroxysteroid Dehydrogenase (HSD) from Human Prostate: Demonstration of Bifunctional 3α/17β-HSD Activity and Cellular Distribution. Molecular Endocrinology, 1997, 11, 1971-1984.	3.7	181
23	The Reactive Oxygen Species- and Michael Acceptor-inducible Human Aldo-Keto Reductase AKR1C1 Reduces the α,β-Unsaturated Aldehyde 4-Hydroxy-2-nonenal to 1,4-Dihydroxy-2-nonene. Journal of Biological Chemistry, 2001, 276, 2890-2897.	3.4	167
24	Role of aldo–keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids, 2014, 79, 49-63.	1.8	159
25	Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 31±-hydroxysteroid/dihydrodiol dehydrogenase. Structure, 1997, 5, 799-812.	3.3	142
26	Mutagenesis of 3α-Hydroxysteroid Dehydrogenase Reveals a "Pushâ^'Pull―Mechanism for Proton Transfer in Aldoâ^'Keto Reductasesâ€. Biochemistry, 1998, 37, 3538-3548.	2.5	142
27	AKR1C1 and AKR1C3 may determine progesterone and estrogen ratios in endometrial cancer. Molecular and Cellular Endocrinology, 2006, 248, 126-135.	3.2	139
28	DNA Strand Scission by Polycyclic Aromatic Hydrocarbon o-Quinones:  Role of Reactive Oxygen Species, Cu(II)/Cu(I) Redox Cycling, and o-Semiquinone Anion Radicals,. Biochemistry, 1997, 36, 8640-8648.	2.5	138
29	Steroid Hormone Transforming Aldoâ€Keto Reductases and Cancer. Annals of the New York Academy of Sciences, 2009, 1155, 33-42.	3.8	138
30	Expression and Characterization of Four Recombinant Human Dihydrodiol Dehydrogenase Isoforms: Oxidation of trans-7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene to the Activated o-Quinone Metabolite Benzo[a]pyrene-7,8-dione,. Biochemistry, 1998, 37, 6781-6790.	2.5	134
31	Synthesis and Characterization of Polycyclic Aromatic Hydrocarbon o-Quinone Depurinating N7-Guanine Adducts. Chemical Research in Toxicology, 1999, 12, 237-246.	3.3	131
32	Reactivity of benzo[a]pyrene-7,8-dione with DNA. Evidence for the formation of deoxyguanosine adducts. Carcinogenesis, 1993, 14, 475-482.	2.8	128
33	Human Type 3 3α-Hydroxysteroid Dehydrogenase (Aldo-Keto Reductase 1C2) and Androgen Metabolism in Prostate Cells. Endocrinology, 2003, 144, 2922-2932.	2.8	126
34	An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3α-HSD, type 5 17β-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies. Biochemical Pharmacology, 2008, 75, 484-493.	4.4	121
35	Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action. Human Reproduction Update, 2003, 9, 193-205.	10.8	119
36	Analysis of 7,8-Dihydro-8-oxo-2′-deoxyguanosine in Cellular DNA during Oxidative Stress. Chemical Research in Toxicology, 2009, 22, 788-797.	3.3	117

#	Article	IF	CITATIONS
37	AKR1C3 as a target in castrate resistant prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 136-149.	2.5	117
38	The Ubiquitous Aldehyde Reductase (AKR1A1) Oxidizes Proximate Carcinogen trans-Dihydrodiols to o-Quinones:  Potential Role in Polycyclic Aromatic Hydrocarbon Activation. Biochemistry, 2001, 40, 10901-10910.	2.5	116
39	Exposure to Ambient Particulate Matter Is Associated With Accelerated Functional Decline in Idiopathic Pulmonary Fibrosis. Chest, 2018, 153, 1221-1228.	0.8	116
40	Characterization of a monoclonal antibody for human aldo-keto reductase AKR1C3 (type 2) Tj ETQq0 0 0 rgBT detection in breast and prostate. Steroids, 2004, 69, 795-801.	/Overlock 1 1.8	10 Tf 50 627 T 115
41	Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Human Genomics, 2009, 3, 362-70.	2.9	115
42	Development of Nonsteroidal Anti-Inflammatory Drug Analogs and Steroid Carboxylates Selective for Human Aldo-Keto Reductase Isoforms: Potential Antineoplastic Agents That Work Independently of Cyclooxygenase Isozymes. Molecular Pharmacology, 2005, 67, 60-68.	2.3	114
43	Reactive Oxygen Species Generated by PAH <i>o</i> -Quinones Cause Change-In-Function Mutations in <i>p53</i> . Chemical Research in Toxicology, 2002, 15, 832-842.	3.3	113
44	Identification of the Major Oxidative 3α-Hydroxysteroid Dehydrogenase in Human Prostate That Converts 5α-Androstane-3α,17β-diol to 5α-Dihydrotestosterone: A Potential Therapeutic Target for Androgen-Dependent Disease. Molecular Endocrinology, 2006, 20, 444-458.	3.7	109
45	Aldo-keto reductase (AKR) 1C3: Role in prostate disease and the development of specific inhibitors. Molecular and Cellular Endocrinology, 2006, 248, 182-191.	3.2	108
46	Structure of 3α-Hydroxysteroid/Dihydrodiol Dehydrogenase Complexed with NADP+Ââ€. Biochemistry, 1996, 35, 10702-10711.	2.5	105
47	Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): Overview and structural insights. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 95-104.	2.5	105
48	Evidence for the aldo-keto reductase pathway of polycyclic aromatic <i>trans</i> -dihydrodiol activation in human lung A549 cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6846-6851.	7.1	103
49	Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon o-quinones produced by dihydrodiol dehydrogenase. Chemico-Biological Interactions, 1996, 99, 55-72.	4.0	98
50	Polycyclic Aromatic Hydrocarbon (PAH) o-Quinones Produced by the Aldo-Keto-Reductases (AKRs) Generate Abasic Sites, Oxidized Pyrimidines, and 8-Oxo-dGuo via Reactive Oxygen Species. Chemical Research in Toxicology, 2006, 19, 719-728.	3.3	97
51	Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 177-187.	2.5	97
52	Crystal Structure of Human Type III 3α-Hydroxysteroid Dehydrogenase/Bile Acid Binding Protein Complexed with NADP+and Ursodeoxycholateâ€,‡. Biochemistry, 2001, 40, 10161-10168.	2.5	94
53	Development of Potent and Selective Inhibitors of Aldo–Keto Reductase 1C3 (Type 5 17β-Hydroxysteroid) Tj Journal of Medicinal Chemistry, 2012, 55, 2311-2323.	ETQq1 1 0 6.4).784314 rg <mark>8</mark> T 93
54	Structure-function aspects and inhibitor design of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Molecular and Cellular Endocrinology, 2001, 171, 137-149.	3.2	88

#	Article	IF	CITATIONS
55	The Biochemical Basis for Increased Testosterone Production in Theca Cells Propagated from Patients with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5925-5933.	3.6	87
56	AKR1B10: A New Diagnostic Marker of Non–Small Cell Lung Carcinoma in Smokers: Fig. 1. Clinical Cancer Research, 2005, 11, 1687-1690.	7.0	86
57	Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons. Chemical Research in Toxicology, 2014, 27, 1901-1917.	3.3	85
58	Liquid chromatography–mass spectrometry (LC–MS) of steroid hormone metabolites and its applications. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 546-555.	2.5	78
59	Development of Potent and Selective Indomethacin Analogues for the Inhibition of AKR1C3 (Type 5) Tj ETQq1 1 Journal of Medicinal Chemistry, 2013, 56, 2429-2446.	0.784314 6.4	rgBT /Overloo 78
60	The Arginine 276 Anchor for NADP(H) Dictates Fluorescence Kinetic Transients in 3α-Hydroxysteroid Dehydrogenase, a Representative Aldoâ^'Keto Reductaseâ€. Biochemistry, 1999, 38, 7856-7864.	2.5	73
61	Formation of 8-Oxo-7,8-dihydro-2â€~-deoxyguanosine (8-Oxo-dGuo) by PAH o-Quinones:  Involvement of Reactive Oxygen Species and Copper(II)/Copper(I) Redox Cycling. Chemical Research in Toxicology, 2005, 18, 1026-1037.	3.3	73
62	Oxidation of PAH <i>trans</i> -Dihydrodiols by Human Aldo-Keto Reductase AKR1B10. Chemical Research in Toxicology, 2008, 21, 2207-2215.	3.3	73
63	Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocrine Reviews, 2019, 40, 447-475.	20.1	73
64	Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates. PLoS ONE, 2015, 10, e0131093.	2.5	72
65	AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Molecular and Cellular Endocrinology, 2019, 489, 82-91.	3.2	72
66	Targeted Androgen Pathway Suppression in Localized Prostate Cancer: A Pilot Study. Journal of Clinical Oncology, 2014, 32, 229-237.	1.6	70
67	Aldo-Keto Reductase (AKR) 1C3 inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2017, 27, 1329-1340.	5.0	70
68	Transcript Profiling of the Androgen Signal in Normal Prostate, Benign Prostatic Hyperplasia, and Prostate Cancer. Endocrinology, 2006, 147, 5806-5816.	2.8	69
69	Aryl Hydrocarbon Receptor Facilitates DNA Strand Breaks and 8-Oxo-2′-deoxyguanosine Formation by the Aldo-Keto Reductase Product Benzo[a]pyrene-7,8-dione. Journal of Biological Chemistry, 2009, 284, 29725-29734.	3.4	68
70	Engineering Steroid 5β-Reductase Activity into Rat Liver 3α-Hydroxysteroid Dehydrogenaseâ€. Biochemistry, 1998, 37, 9695-9703.	2.5	67
71	Crystal Structure of Human Liver Δ4-3-Ketosteroid 5β-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis. Journal of Biological Chemistry, 2008, 283, 16830-16839.	3.4	67
72	Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: Kinetics of thiol addition to PAH ortho-quinones and structures of thioether adducts of naphthalene-1,2-dione. Chemico-Biological Interactions, 1992, 84, 169-188.	4.0	65

#	Article	IF	CITATIONS
73	Structure–function relationships in 3α-hydroxysteroid dehydrogenases: a comparison of the rat and human isoforms. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 247-255.	2.5	65
74	Type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase (AKR1C3): Role in breast cancer and inhibition by non-steroidal anti-inflammatory drug analogs. Chemico-Biological Interactions, 2009, 178, 221-227.	4.0	65
75	Tibolone Metabolism in Human Liver Is Catalyzed by 3î±/3î²-Hydroxysteroid Dehydrogenase Activities of the Four Isoforms of the Aldo-Keto Reductase (AKR)1C Subfamily. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1300-1309.	2.5	63
76	Tibolone Is Metabolized by the 3α/3β-Hydroxysteroid Dehydrogenase Activities of the Four Human Isozymes of the Aldo-Keto Reductase 1C Subfamily: Inversion of Stereospecificity with a Δ5(10)-3-Ketosteroid. Molecular Pharmacology, 2004, 66, 1702-1711.	2.3	61
77	Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis. Chemical Research in Toxicology, 2017, 30, 162-176.	3.3	59
78	The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer. Chemico-Biological Interactions, 2015, 234, 332-338.	4.0	57
79	Multiple Steps Determine the Overall Rate of the Reduction of 5α-Dihydrotestosterone Catalyzed by Human Type 3 3α-Hydroxysteroid Dehydrogenase: Implications for the Elimination of Androgensâ€. Biochemistry, 2006, 45, 13054-13063.	2.5	54
80	Pre-receptor regulation of the androgen receptor. Molecular and Cellular Endocrinology, 2008, 281, 1-8.	3.2	54
81	Elucidation of a Complete Kinetic Mechanism for a Mammalian Hydroxysteroid Dehydrogenase (HSD) and Identification of All Enzyme Forms on the Reaction Coordinate. Journal of Biological Chemistry, 2007, 282, 33484-33493.	3.4	53
82	Crystal structures of AKR1C3 containing an N-(aryl)amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3492-3497.	2.2	52
83	AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2019, 99, 67-80.	3.4	52
84	Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacological Reviews, 2021, 73, 1150-1171.	16.0	52
85	Overexpression of aldo-keto reductase 1C3 (AKR1C3) in LNCaP cells diverts androgen metabolism towards testosterone resulting in resistance to the 51±-reductase inhibitor finasteride. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 7-15.	2.5	51
86	Inhibition of Human Steroid 5β-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex. Journal of Biological Chemistry, 2009, 284, 19786-19790.	3.4	50
87	Deoxycorticosterone inactivation by AKR1C3 in human mineralocorticoid target tissues. Molecular and Cellular Endocrinology, 2006, 248, 79-86.	3.2	49
88	Genome-wide association study confirms lung cancer susceptibility loci on chromosomes 5p15 and 15q25 in an African-American population. Lung Cancer, 2016, 98, 33-42.	2.0	49
89	Identification of the molecular switch that regulates access of 5α-DHT to the androgen receptor. Molecular and Cellular Endocrinology, 2007, 265-266, 77-82.	3.2	46
90	Contribution of Adrenal Glands to Intratumor Androgens and Growth of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 426-439.	7.0	46

#	Article	IF	CITATIONS
91	Characterization of Disease-related 5β-Reductase (AKR1D1) Mutations Reveals Their Potential to Cause Bile Acid Deficiency. Journal of Biological Chemistry, 2010, 285, 24529-24537.	3.4	45
92	Development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization/selected reaction monitoring/mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of keto-androgens in human serum. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 281-289.	2.5	45
93	The Pattern of <i>p53</i> Mutations Caused by PAH <i>o</i> -Quinones is Driven by 8-oxo-dGuo Formation while the Spectrum of Mutations is Determined by Biological Selection for Dominance. Chemical Research in Toxicology, 2008, 21, 1039-1049.	3.3	44
94	Specificity of Human Aldo-Keto Reductases, NAD(P)H:Quinone Oxidoreductase, and Carbonyl Reductases to Redox-Cycle Polycyclic Aromatic Hydrocarbon Diones and 4-Hydroxyequilenin- <i>o-</i> quinone. Chemical Research in Toxicology, 2011, 24, 2153-2166.	3.3	43
95	Human hydroxysteroid dehydrogenases and pre-receptor regulation: Insights into inhibitor design and evaluation. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 46-56.	2.5	43
96	Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC). Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 105-113.	2.5	41
97	Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1). Steroids, 2011, 76, 484-490.	1.8	40
98	Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1464-1468.	2.2	40
99	Characterization of mercapturic acid and glutathionyl conjugates of benzo[a]pyrene-7,8-dione by two-dimensional NMR. Bioconjugate Chemistry, 1992, 3, 218-224.	3.6	39
100	Aldo-Keto Reductases and Formation of Polycyclic Aromatic Hydrocarbon o-Quinones. Methods in Enzymology, 2004, 378, 31-67.	1.0	39
101	New frontiers in androgen biosynthesis and metabolism. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 233-239.	2.3	39
102	Potent and Highly Selective Aldo–Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Journal of Medicinal Chemistry, 2019, 62, 3590-3616.	6.4	39
103	5β-Reduced steroids and human Δ4-3-ketosteroid 5β-reductase (AKR1D1). Steroids, 2014, 83, 17-26.	1.8	37
104	Selective AKR1C3 Inhibitors Potentiate Chemotherapeutic Activity in Multiple Acute Myeloid Leukemia (AML) Cell Lines. ACS Medicinal Chemistry Letters, 2016, 7, 774-779.	2.8	36
105	AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells. Molecular Cancer Therapeutics, 2018, 17, 1833-1845.	4.1	36
106	Androgen biosynthesis in castration-resistant prostate cancer. Endocrine-Related Cancer, 2014, 21, T67-T78.	3.1	35
107	Promiscuity and diversity in 3-ketosteroid reductases. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 93-101.	2.5	35
108	Identification of the Oxidative 3α-Hydroxysteroid Dehydrogenase Activity of Rat Leydig Cells as Type II Retinol Dehydrogenase*. Endocrinology, 2000, 141, 1608-1617.	2.8	34

#	Article	IF	CITATIONS
109	Stereospecific reduction of 5Î ² -reduced steroids by human ketosteroid reductases of the AKR (aldo-keto) Tj ETQq1 via the 5Î ² -reductase pathway. Biochemical Journal, 2011, 437, 53-61.	1 0.7843 3.7	314 rgBT /⊖ 34
110	Detoxication of Benzo[a]pyrene-7,8-dione by Sulfotransferases (SULTs) in Human Lung Cells. Journal of Biological Chemistry, 2012, 287, 29909-29920.	3.4	34
111	Discovery of (R)-2-(6-Methoxynaphthalen-2-yl)butanoic Acid as a Potent and Selective Aldo-keto Reductase 1C3 Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 7431-7444.	6.4	33
112	Identification of Stable Benzo[<i>a</i>]pyrene-7,8-dione-DNA Adducts in Human Lung Cells. Chemical Research in Toxicology, 2013, 26, 685-692.	3.3	32
113	Structure and catalytic mechanism of human steroid 5β-reductase (AKR1D1). Molecular and Cellular Endocrinology, 2009, 301, 191-198.	3.2	31
114	Pentafluorosulfanyl-containing flufenamic acid analogs: Syntheses, properties and biological activities. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4437-4440.	2.2	30
115	Molecular docking simulations of steroid substrates into human cytosolic hydroxysteroid dehydrogenases (AKR1C1 and AKR1C2): Insights into positional and stereochemical preferences. Steroids, 2006, 71, 380-391.	1.8	29
116	Quantitation of Benzo[<i>a</i>]pyrene Metabolic Profiles in Human Bronchoalveolar (H358) Cells by Stable Isotope Dilution Liquid Chromatography–Atmospheric Pressure Chemical Ionization Mass Spectrometry. Chemical Research in Toxicology, 2011, 24, 1905-1914.	3.3	28
117	Genomics of Smoking Exposure and Cessation: Lessons for Cancer Prevention and Treatment: Fig. 1. Cancer Prevention Research, 2008, 1, 80-83.	1.5	27
118	Aldo-keto reductase 1C3—Assessment as a new target for the treatment of endometriosis. Pharmacological Research, 2020, 152, 104446.	7.1	27
119	Detoxication of Structurally Diverse Polycyclic Aromatic Hydrocarbon (PAH) o-Quinones by Human Recombinant Catechol-O-methyltransferase (COMT) via O-Methylation of PAH Catechols. Journal of Biological Chemistry, 2011, 286, 25644-25654.	3.4	26
120	Conversion of Classical and 11-Oxygenated Androgens by Insulin-Induced AKR1C3 in a Model of Human PCOS Adipocytes. Endocrinology, 2022, 163, .	2.8	25
121	Screening baccharin analogs as selective inhibitors against type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Chemico-Biological Interactions, 2015, 234, 339-348.	4.0	24
122	Interception of Benzo[<i>a</i>]pyrene-7,8-dione by UDP Glucuronosyltransferases (UGTs) in Human Lung Cells. Chemical Research in Toxicology, 2013, 26, 1570-1578.	3.3	22
123	Simultaneous quantitation of nine hydroxy-androgens and their conjugates in human serum by stable isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 342-355.	2.5	22
124	Characterization of homogeneous recombinant rat ovarian 20α-hydroxysteroid dehydrogenase: fluorescent properties and inhibition profile. Biochemical Journal, 1999, 341, 853-859.	3.7	21
125	Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells. Chemical Research in Toxicology, 2014, 27, 852-863.	3.3	21
126	Metabolism and Distribution of Benzo[<i>a</i>]pyrene-7,8-dione (B[<i>a</i>]P-7,8-dione) in Human Lung Cells by Liquid Chromatography Tandem Mass Spectrometry: Detection of an Adenine B[<i>a</i>]P-7,8-dione Adduct. Chemical Research in Toxicology, 2012, 25, 993-1003.	3.3	20

#	Article	IF	CITATIONS
127	Genotoxicity of ortho-quinones: reactive oxygen species versus covalent modification. Toxicology Research, 2017, 6, 740-754.	2.1	20
128	Environmental Health Research Recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environmental Health Perspectives, 2014, 122, 1155-1159.	6.0	19
129	Conversion of Human Steroid 5î²-Reductase (AKR1D1) into 3î²-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H. Journal of Biological Chemistry, 2012, 287, 16609-16622.	3.4	18
130	Detection of an Fe2+â^'Protoporphyrin-IX Intermediate during Aspirin-Treated Prostaglandin H2 Synthase II Catalysis of Arachidonic Acid to 15-HETE,. Biochemistry, 1997, 36, 7527-7534.	2.5	17
131	Alanine Scanning Mutagenesis of the Testosterone Binding Site of Rat 3α-Hydroxysteroid Dehydrogenase Demonstrates Contact Residues Influence the Rate-Determining Step. Biochemistry, 2004, 43, 5832-5841.	2.5	17
132	Synthesis of 13C2-benzo[a]pyrene and its 7,8-dihydrodiol and 7,8-dione implicated as carcinogenic metabolites. Tetrahedron Letters, 2008, 49, 4531-4533.	1.4	17
133	Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells. Chemical Research in Toxicology, 2019, 32, 2538-2551.	3.3	17
134	A 3-(4-nitronaphthen-1-yl) amino-benzoate analog as a bifunctional AKR1C3 inhibitor and AR antagonist: Head to head comparison with other advanced AKR1C3 targeted therapeutics. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105283.	2.5	17
135	Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. Journal of Biological Chemistry, 2021, 296, 100240.	3.4	17
136	Genetic and epigenetic regulation of the NRF2-KEAP1 pathway in human lung cancer. British Journal of Cancer, 2022, 126, 1244-1252.	6.4	17
137	The effect of disease associated point mutations on 5β-reductase (AKR1D1) enzyme function. Chemico-Biological Interactions, 2011, 191, 250-254.	4.0	16
138	Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis. Biochemical Journal, 2014, 462, 163-171.	3.7	16
139	AKR1D1 regulates glucocorticoid availability and glucocorticoid receptor activation in human hepatoma cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 218-227.	2.5	16
140	Metabolism of the synthetic progestogen norethynodrel by human ketosteroid reductases of the aldo–keto reductase superfamily. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 139-144.	2.5	15
141	Potential Metabolic Activation of Representative Alkylated Polycyclic Aromatic Hydrocarbons 1-Methylphenanthrene and 9-Ethylphenanthrene Associated with the Deepwater Horizon Oil Spill in Human Hepatoma (HepG2) Cells. Chemical Research in Toxicology, 2017, 30, 2140-2150.	3.3	15
142	Mechanism Based Inhibition of Hydroxysteroid Dehydrogenases. Journal of Enzyme Inhibition and Medicinal Chemistry, 1991, 5, 165-198.	0.5	14
143	Intracrinology-revisited and prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105499.	2.5	14
144	SYNTHESES OF ADDUCTS OF ACTIVE METABOLITES OF CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS WITH 2â€2-DEOXYRIBONUCLEOSIDES. Polycyclic Aromatic Compounds, 2005, 25, 371-391.	2.6	13

#	Article	IF	CITATIONS
145	Introduction and Overview of the Aldo-Keto Reductase Superfamily. ACS Symposium Series, 2003, , 3-20.	0.5	12
146	Alternative splicing in the aldo–keto reductase superfamily: Implications for protein nomenclature. Chemico-Biological Interactions, 2013, 202, 153-158.	4.0	11
147	Potential Metabolic Activation of a Representative C4-Alkylated Polycyclic Aromatic Hydrocarbon Retene (1-Methyl-7-isopropyl-phenanthrene) Associated with the Deepwater Horizon Oil Spill in Human Hepatoma (HepG2) Cells. Chemical Research in Toxicology, 2017, 30, 1093-1101.	3.3	11
148	Dehydroepiandrosterone (DHEA)-SO 4 Depot and Castration-Resistant Prostate Cancer. Vitamins and Hormones, 2018, 108, 309-331.	1.7	11
149	In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency. Biochemistry, 2015, 54, 6343-6351.	2.5	10
150	Testicular vs adrenal sources of hydroxy-androgens in prostate cancer. Endocrine-Related Cancer, 2017, 24, 393-404.	3.1	10
151	Identification of the Oxidative 3Â-Hydroxysteroid Dehydrogenase Activity of Rat Leydig Cells as Type II Retinol Dehydrogenase. Endocrinology, 2000, 141, 1608-1617.	2.8	10
152	Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo. Journal of Endocrinology, 2020, 245, 207-218.	2.6	9
153	Air pollution and lung cancer survival in Pennsylvania. Lung Cancer, 2022, 170, 65-73.	2.0	9
154	Metabolism of an Alkylated Polycyclic Aromatic Hydrocarbon 5-Methylchrysene in Human Hepatoma (HepG2) Cells. Chemical Research in Toxicology, 2015, 28, 2045-2058.	3.3	8
155	Role of Human Aldo-Keto Reductases in the Metabolic Activation of the Carcinogenic Air Pollutant 3-Nitrobenzanthrone. Chemical Research in Toxicology, 2018, 31, 1277-1288.	3.3	8
156	Human and murine steroid 5β-reductases (AKR1D1 and AKR1D4): insights into the role of the catalytic glutamic acid. Chemico-Biological Interactions, 2019, 305, 163-170.	4.0	8
157	Development of a Genotyping Microarray for Studying the Role of Gene-Environment Interactions in Risk for Lung Cancer. Journal of Biomolecular Techniques, 2013, 24, jbt.13-2404-004.	1.5	7
158	Geographic Differences in Lung Cancer Incidence: A Study of a Major Metropolitan Area within Southeastern Pennsylvania. International Journal of Environmental Research and Public Health, 2020, 17, 9498.	2.6	7
159	AKR1D1 knockout mice develop a sex-dependent metabolic phenotype. Journal of Endocrinology, 2022, 253, 97-113.	2.6	7
160	Benzo[a]pyrene-7,8-dione is More Mutagenic than Anti -BPDE on p53 and is Dependent on the Generation of Reactive Oxygen Species. Polycyclic Aromatic Compounds, 2002, 22, 881-891.	2.6	6
161	The rate-determining steps of aldo–keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1). Chemico-Biological Interactions, 2015, 234, 360-365.	4.0	6
162	Potential Metabolic Activation of a Representative C2-Alkylated Polycyclic Aromatic Hydrocarbon 6-Ethylchrysene Associated with the Deepwater Horizon Oil Spill in Human Hepatoma (HepG2) Cells. Chemical Research in Toxicology, 2016, 29, 991-1002.	3.3	6

#	Article	lF	CITATIONS
163	Biology and clinical relevance of Hydroxysteroid (17beta) dehydrogenase enzymes. Molecular and Cellular Endocrinology, 2019, 489, 1-2.	3.2	6
164	Environmental exposomics and lung cancer risk assessment in the Philadelphia metropolitan area using ZIP code–level hazard indices. Environmental Science and Pollution Research, 2021, 28, 31758-31769.	5.3	6
165	Estrogen receptor-dependent and independent roles of benzo[a]pyrene in Ishikawa cells. Journal of Endocrinology, 2020, 247, 139-151.	2.6	6
166	Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency. Biochemical Journal, 2015, 468, 25-31.	3.7	5
167	Characterization of the major single nucleotide polymorphic variants of aldo-keto reductase 1C3 (type) Tj ETQq1 106121.	1 0.78431 2.5	.4 rgBT /Ove 5
168	Automating Predictive Toxicology Using ComptoxAI. Chemical Research in Toxicology, 2022, 35, 1370-1382.	3.3	5
169	Using Precision Environmental Health Principles in Risk Evaluation and Communication of the Deepwater Horizon Oil Spill. New Solutions, 2019, 28, 599-616.	1.2	4
170	Stable Transfection of Dihydrodiol Dehydrogenase in MCF-7 Breast Carcinoma Cells Promotes Polycyclic Aromatic Hydrocarbon- <i>O</i> -Quinone Formation which Leads to Cell Death. Polycyclic Aromatic Compounds, 2000, 16, 215-224.	2.6	3
171	Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons. ACS Symposium Series, 2003, , 83-100.	0.5	3
172	Chemistry of Polycyclic Aromatic Hydrocarbons (PAH) o-Quinones Generated by the Aldo-Keto Reductase Pathway of PAH Activation. ACS Symposium Series, 2003, , 127-137.	0.5	3
173	Abstracts, American Chemical Society Division of Chemical Toxicology, 230th ACS National Meeting, Washington, DC, August 28â^'September 1, 2005. Chemical Research in Toxicology, 2005, 18, 1967-1991.	3.3	3
174	Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us. Journal of Steroid Biochemistry and Molecular Biology, 2016, 161, 5-12.	2.5	3
175	Differential activity and expression of human 5β-reductase (AKR1D1) splice variants. Journal of Molecular Endocrinology, 2021, 66, 181-194.	2.5	3
176	Identification of spatio-temporal clusters of lung cancer cases in Pennsylvania, USA: 2010–2017. BMC Cancer, 2022, 22, 555.	2.6	3
177	EFFICIENT NEW SYNTHESES OF POLYCYCLIC AROMATIC HYDROCARBON ORTHO-QUINONES AND THEIR 2â€2-DEOXYRIBONUCLEOSIDE ADDUCTS. Polycyclic Aromatic Compounds, 2004, 24, 257-269.	2.6	2
178	POLYCYCLIC AROMATIC HYDROCARBONO-QUINONES MUTATEp53 IN HUMAN LUNG ADENOCARCINOMA (A549) CELLS. Polycyclic Aromatic Compounds, 2004, 24, 583-596.	2.6	2
179	Abstracts, American Chemical Society Division of Chemical Toxicology, 232nd ACS National Meeting, San Francisco CA, September 10â^'September 14, 2006. Chemical Research in Toxicology, 2006, 19, 1677-1701.	3.3	2
180	On meta―and megaâ€analyses for gene–environment interactions. Genetic Epidemiology, 2017, 41, 876-886.	. 1.3	2

#	Article	IF	CITATIONS
181	Benzo[a]pyrene-7,8-dione is More Mutagenic than Anti -BPDE on p53 and is Dependent on the Generation of Reactive Oxygen Species. Polycyclic Aromatic Compounds, 2002, 22, 881-891.	2.6	2
182	The Aldo-Keto Reductases and Polycyclic Aromatic Hydrocarbon Activation. Polycyclic Aromatic Compounds, 2002, 22, 791-800.	2.6	1
183	Current advances in intratumoral androgen metabolism in castration-resistant prostate cancer. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 264-270.	2.3	1
184	The Aldo-Keto Reductases and Polycyclic Aromatic Hydrocarbon Activation. Polycyclic Aromatic Compounds, 2002, 22, 791-800.	2.6	1
185	Intracrine androgen biosynthesis and drug resistance. , 2020, 3, 912-929.		1
186	Estrogen receptor-dependent and independent roles of benzo[a]pyrene in Ishikawa cells. Journal of Endocrinology, 2020, 247, 139-151.	2.6	1
187	Human AKR1C Isoforms Oxidize the Potent Proximate Carcinogen 7,12-DMBA-3,4-diol in the Human Lung A549 Carcinoma Cell Line. Polycyclic Aromatic Compounds, 2002, 22, 801-810.	2.6	0
188	Efficient Syntheses of the Active Metabolites of Carcinogenic Polycyclic Aromatic Hydrocarbons. ACS Symposium Series, 2003, , 115-126.	0.5	0
189	A Complete Kinetic Mechanism of Rat 3αâ€Hydroxysteroid Dehydrogenase. FASEB Journal, 2006, 20, A480.	0.5	0
190	The Plight of Postdocs. Science, 1998, 281, 647-647.	12.6	0