
Gregory A Michelotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts. Metabolites, 2022, 12, 404.	2.9	Ο
2	Metabolome Alterations Linking Sugar-Sweetened Beverage Intake with Dyslipidemia in Youth: The Exploring Perinatal Outcomes among CHildren (EPOCH) Study. Metabolites, 2022, 12, 559.	2.9	1
3	Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nature Medicine, 2021, 27, 471-479.	30.7	81
4	A prospective study of associations between in utero exposure to gestational diabetes mellitus and metabolomic profiles during late childhood and adolescence. Diabetologia, 2020, 63, 296-312.	6.3	28
5	Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules. Network and Systems Medicine, 2020, 3, 159-181.	2.5	22
6	Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population. Metabolites, 2019, 9, 61.	2.9	30
7	Loss of pericyte smoothened activity in mice with genetic deficiency of leptin. BMC Cell Biology, 2017, 18, 20.	3.0	16
8	Metabolomics Study of the Effects of Inflammation, Hypoxia, and High Glucose on Isolated Human Pancreatic Islets. Journal of Proteome Research, 2017, 16, 2294-2306.	3.7	35
9	TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radical Biology and Medicine, 2017, 102, 260-273.	2.9	31
10	Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. American Journal of Physiology - Renal Physiology, 2016, 310, G510-G525.	3.4	30
11	Hedgehog regulates yesâ€associated protein 1 in regenerating mouse liver. Hepatology, 2016, 64, 232-244.	7.3	94
12	Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut, 2016, 65, 683-692.	12.1	28
13	Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes. Cancer Research, 2016, 76, 2394-2405.	0.9	40
14	Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 32-45.	3.8	23
15	Vitamin B5 and N-Acetylcysteine in Nonalcoholic Steatohepatitis: A Preclinical Study in a Dietary Mouse Model. Digestive Diseases and Sciences, 2016, 61, 137-148.	2.3	10
16	Upregulation of miR21 and Repression of Grhl3 by Leptin Mediates Sinusoidal Endothelial Injury in Experimental Nonalcoholic Steatohepatitis. PLoS ONE, 2015, 10, e0116780.	2.5	22
17	Mouse Models of Diet-Induced Nonalcoholic Steatohepatitis Reproduce the Heterogeneity of the Human Disease. PLoS ONE, 2015, 10, e0127991.	2.5	261
18	NADPH Oxidase–Derived Peroxynitrite Drives Inflammation in Mice and Human Nonalcoholic Steatohepatitis via TLR4-Lipid Raft Recruitment. American Journal of Pathology, 2015, 185, 1944-1957.	3.8	38

#	Article	IF	CITATIONS
19	Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis. American Journal of Physiology - Renal Physiology, 2015, 308, G298-G312.	3.4	101
20	Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. Journal of Hepatology, 2015, 63, 962-970.	3.7	101
21	Role of Fn14 in acute alcoholic steatohepatitis in mice. American Journal of Physiology - Renal Physiology, 2015, 308, G325-G334.	3.4	14
22	Inflammatory Models Drastically Alter Tumor Growth and the Immune Microenvironment in Hepatocellular Carcinoma. Science Bulletin, 2015, 60, 762-772.	9.0	5
23	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	9.6	225
24	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
25	M1 Polarization Bias and Subsequent Nonalcoholic Steatohepatitis Progression Is Attenuated by Nitric Oxide Donor DETA NONOate via Inhibition of CYP2E1-Induced Oxidative Stress in Obese Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 77-89.	2.5	27
26	Temporal Dissection of Rate Limiting Transcriptional Events Using Pol II ChIP and RNA Analysis of Adrenergic Stress Gene Activation. PLoS ONE, 2015, 10, e0134442.	2.5	8
27	LGR5 is associated with tumor aggressiveness in papillary thyroid cancer. Oncotarget, 2015, 6, 34549-34560.	1.8	23
28	Repair-Related Activation of Hedgehog Signaling in Stromal Cells Promotes Intrahepatic Hypothyroidism. Endocrinology, 2014, 155, 4591-4601.	2.8	53
29	Alcohol Activates the Hedgehog Pathway and Induces Related Procarcinogenic Processes in the Alcoholâ€Preferring Rat Model of Hepatocarcinogenesis. Alcoholism: Clinical and Experimental Research, 2014, 38, 787-800.	2.4	28
30	Reply. Hepatology, 2014, 60, 1445-1446.	7.3	0
31	CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8+ T cells aid progression of environment-linked nonalcoholic steatohepatitis. Toxicology and Applied Pharmacology, 2014, 274, 42-54.	2.8	28
32	Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology, 2014, 59, 471-482.	7.3	256
33	TWEAK/Fn14 Signaling Is Required for Liver Regeneration after Partial Hepatectomy in Mice. PLoS ONE, 2014, 9, e83987.	2.5	58
34	NAFLD, NASH and liver cancer. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 656-665.	17.8	842
35	Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology, 2013, 58, 1801-1813.	7.3	105
36	Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. American Journal of Physiology - Renal Physiology, 2013, 305, G950-G963.	3.4	48

GREGORY A MICHELOTTI

#	Article	IF	CITATIONS
37	Environmental Toxin–Linked Nonalcoholic Steatohepatitis and Hepatic Metabolic Reprogramming in Obese Mice. Toxicological Sciences, 2013, 134, 291-303.	3.1	50
38	Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut, 2013, 62, 299-309.	12.1	105
39	Hedgehog Signaling in Human Medullary Thyroid Carcinoma: A Novel Signaling Pathway. Thyroid, 2013, 23, 1119-1126.	4.5	21
40	Smoothened is a master regulator of adult liver repair. Journal of Clinical Investigation, 2013, 123, 2380-94.	8.2	170
41	NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut, 2012, 61, 1323-1329.	12.1	231
42	Paracrine Hedgehog Signaling Drives Metabolic Changes in Hepatocellular Carcinoma. Cancer Research, 2012, 72, 6344-6350.	0.9	56
43	Hedgehog Controls Hepatic Stellate Cell Fate by Regulating Metabolism. Gastroenterology, 2012, 143, 1319-1329.e11.	1.3	201
44	Hedgehog signaling in the liver. Journal of Hepatology, 2011, 54, 366-373.	3.7	232
45	Hedgehog Signaling Antagonist Promotes Regression of Both Liver Fibrosis and Hepatocellular Carcinoma in a Murine Model of Primary Liver Cancer. PLoS ONE, 2011, 6, e23943.	2.5	134
46	Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology, 2011, 53, 106-115.	7.3	224
47	Leptin Promotes the Myofibroblastic Phenotype in Hepatic Stellate Cells by Activating the Hedgehog Pathway. Journal of Biological Chemistry, 2010, 285, 36551-36560.	3.4	155
48	Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. American Journal of Physiology - Renal Physiology, 2009, 297, G1093-G1106.	3.4	197
49	Targeting inhibition of GluR1 Ser845 phosphorylation with an RNA aptamer that blocks AMPA receptor trafficking. Journal of Neurochemistry, 2009, 108, 147-157.	3.9	20
50	Identification of 3-hydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-ones as isoform-selective PKC-ζ inhibitors and potential therapeutics for psychostimulant abuse. Molecular BioSystems, 2009, 5, 927.	2.9	11
51	The α1a-Adrenergic Receptor Occupies Membrane Rafts with Its G Protein Effectors but Internalizes via Clathrin-coated Pits. Journal of Biological Chemistry, 2008, 283, 2973-2985.	3.4	38
52	Epigenetic regulation of human α 1d â€adrenergic receptor gene expression: a role for DNA methylation in Splâ€dependent regulation. FASEB Journal, 2007, 21, 1979-1993.	0.5	38
53	Genomics and proteomics. , 2006, , 71-78.		0
54	Differential cardiac gene expression during cardiopulmonary bypass: Ischemia-independent upregulation of proinflammatory genes. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 330-339.	0.8	30

#	Article	IF	CITATIONS
55	Evidence That Phosphorylation of the RNA Polymerase II Carboxyl-terminal Repeats Is Similar in Yeast and Humans. Journal of Biological Chemistry, 2005, 280, 31368-31377.	3.4	46
56	Update on human ?-adrenoceptor subtype signaling and genomic organization. Trends in Pharmacological Sciences, 2004, 25, 449-455.	8.7	75
57	Cloning and Characterization of the Rat α1a-Adrenergic Receptor Gene Promoter. Journal of Biological Chemistry, 2003, 278, 8693-8705.	3.4	15
58	$\hat{l}\pm 1$ -Adrenergic receptor regulation: basic science and clinical implications. , 2000, 88, 281-309.		211
59	IMMORTALIZATION OF A HUMAN PROSTATE STROMAL CELL LINE USING A RECOMBINANT RETROVIRAL APPROACH. Journal of Urology, 2000, 164, 2145-2150.	0.4	14
60	CHARACTERIZATION OF $\hat{1}\pm$ -ADRENOCEPTOR SUBTYPES IN THE CORPUS CAVERNOSUM OF PATIENTS UNDERGOING SEX CHANGE SURGERY. Journal of Urology, 1999, 162, 1793-1799.	0.4	32
61	Unrestraining Genetic Processes with a Protein–DNA Hinge. Molecular Cell, 1998, 1, 759-764.	9.7	43
62	The Far Upstream Element-binding Proteins Comprise an Ancient Family of Single-strand DNA-binding Transactivators. Journal of Biological Chemistry, 1996, 271, 31679-31687.	3.4	156