
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4280197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TERRA RNA Binding to TRF2 Facilitates Heterochromatin Formation and ORC Recruitment at Telomeres. Molecular Cell, 2009, 35, 403-413.	4.5	465
2	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	13.7	440
3	Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO Journal, 2008, 27, 654-666.	3.5	326
4	The c-MYC Oncoprotein Is a Substrate of the Acetyltransferases hGCN5/PCAF and TIP60. Molecular and Cellular Biology, 2004, 24, 10826-10834.	1.1	299
5	An Atlas of the Epstein-Barr Virus Transcriptome and Epigenome Reveals Host-Virus Regulatory Interactions. Cell Host and Microbe, 2012, 12, 233-245.	5.1	230
6	Epstein-Barr Virus-Induced miR-155 Attenuates NF-κB Signaling and Stabilizes Latent Virus Persistence. Journal of Virology, 2008, 82, 10436-10443.	1.5	207
7	Epigenetic Regulation of Kaposi's Sarcoma-Associated Herpesvirus Latency by Virus-Encoded MicroRNAs That Target Rta and the Cellular Rbl2-DNMT Pathway. Journal of Virology, 2010, 84, 2697-2706.	1.5	204
8	A general mechanism for transcriptional synergy by eukaryotic activators. Nature, 1995, 377, 254-257.	13.7	200
9	Editing of Epstein-Barr Virus-encoded BART6 MicroRNAs Controls Their Dicer Targeting and Consequently Affects Viral Latency*. Journal of Biological Chemistry, 2010, 285, 33358-33370.	1.6	200
10	Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5845-5850.	3.3	186
11	ORC, MCM, and Histone Hyperacetylation at the Kaposi's Sarcoma-Associated Herpesvirus Latent Replication Origin. Journal of Virology, 2004, 78, 12566-12575.	1.5	174
12	Chromatin Remodeling of the Kaposi's Sarcoma-Associated Herpesvirus ORF50 Promoter Correlates with Reactivation from Latency. Journal of Virology, 2003, 77, 11425-11435.	1.5	149
13	A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO Journal, 2012, 31, 4165-4178.	3.5	147
14	Role for G-Quadruplex RNA Binding by Epstein-Barr Virus Nuclear Antigen 1 in DNA Replication and Metaphase Chromosome Attachment. Journal of Virology, 2009, 83, 10336-10346.	1.5	136
15	Inhibition of TATA-Binding Protein Function by SAGA Subunits Spt3 and Spt8 at Gcn4-Activated Promoters. Molecular and Cellular Biology, 2000, 20, 634-647.	1.1	133
16	Snapshots: Chromatin control of viral infection. Virology, 2013, 435, 141-156.	1.1	133
17	Telomeric Proteins Regulate Episomal Maintenance of Epstein-Barr Virus Origin of Plasmid Replication. Molecular Cell, 2002, 9, 493-503.	4.5	128
18	Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal–Hreidarsson syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3408-16.	3.3	127

2

#	Article	IF	CITATIONS
19	Epigenetics and Genetics of Viral Latency. Cell Host and Microbe, 2016, 19, 619-628.	5.1	124
20	Acetylation of the Latency-Associated Nuclear Antigen Regulates Repression of Kaposi's Sarcoma-Associated Herpesvirus Lytic Transcription. Journal of Virology, 2006, 80, 5273-5282.	1.5	116
21	EBV Latency Types Adopt Alternative Chromatin Conformations. PLoS Pathogens, 2011, 7, e1002180.	2.1	115
22	Keeping it quiet: chromatin control of gammaherpesvirus latency. Nature Reviews Microbiology, 2013, 11, 863-875.	13.6	111
23	Epigenetic regulation of EBV persistence and oncogenesis. Seminars in Cancer Biology, 2014, 26, 22-29.	4.3	105
24	Cell cycle regulation of chromatin at an origin of DNA replication. EMBO Journal, 2005, 24, 1406-1417.	3.5	104
25	EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription. PLoS Pathogens, 2011, 7, e1002376.	2.1	104
26	CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp. PLoS Pathogens, 2010, 6, e1001048.	2.1	102
27	RNA-dependent recruitment of the origin recognition complex. EMBO Journal, 2008, 27, 3024-3035.	3.5	100
28	Coordination of KSHV Latent and Lytic Gene Control by CTCF-Cohesin Mediated Chromosome Conformation. PLoS Pathogens, 2011, 7, e1002140.	2.1	100
29	Lytic but Not Latent Replication of Epstein-Barr Virus Is Associated with PML and Induces Sequential Release of Nuclear Domain 10 Proteins. Journal of Virology, 2000, 74, 11800-11810.	1.5	94
30	Epstein-Barr Virus Turns 50. Science, 2014, 343, 1323-1325.	6.0	91
31	A Human TATA Binding Protein-Related Protein with Altered DNA Binding Specificity Inhibits Transcription from Multiple Promoters and Activators. Molecular and Cellular Biology, 1999, 19, 7610-7620.	1.1	90
32	Regulation of Epstein-Barr Virus Latency Type by the Chromatin Boundary Factor CTCF. Journal of Virology, 2006, 80, 5723-5732.	1.5	85
33	TERRA, CpG methylation, and telomere heterochromatin: Lessons from ICF syndrome cells. Cell Cycle, 2010, 9, 69-74.	1.3	83
34	Chromatin Profiling of Epstein-Barr Virus Latency Control Region. Journal of Virology, 2007, 81, 6389-6401.	1.5	81
35	Stimulation of CREB Binding Protein Nucleosomal Histone Acetyltransferase Activity by a Class of Transcriptional Activators. Molecular and Cellular Biology, 2001, 21, 476-487.	1.1	78
36	Dynamic Chromatin Boundaries Delineate a Latency Control Region of Epstein-Barr Virus. Journal of Virology, 2004, 78, 12308-12319.	1.5	78

#	Article	IF	CITATIONS
37	The Origin Recognition Complex Localizes to Telomere Repeats and Prevents Telomere-Circle Formation. Current Biology, 2007, 17, 1989-1995.	1.8	78
38	Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6293-300.	3.3	76
39	Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). Virology Journal, 2010, 7, 262.	1.4	74
40	Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Science Translational Medicine, 2019, 11, .	5.8	72
41	ORC binding to TRF2 stimulates OriP replication. EMBO Reports, 2006, 7, 716-721.	2.0	71
42	<scp>ATRX</scp> loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization. EMBO Journal, 2019, 38, e96659.	3.5	71
43	Molecular Basis for Oligomeric-DNA Binding and Episome Maintenance by KSHV LANA. PLoS Pathogens, 2013, 9, e1003672.	2.1	70
44	The Amino-Terminal C/H1 Domain of CREB Binding Protein Mediates Zta Transcriptional Activation of Latent Epstein-Barr Virus. Molecular and Cellular Biology, 1999, 19, 1617-1626.	1.1	68
45	Cohesins Repress Kaposi's Sarcoma-Associated Herpesvirus Immediate Early Gene Transcription during Latency. Journal of Virology, 2012, 86, 9454-9464.	1.5	67
46	Chromatin regulation of virus infection. Trends in Microbiology, 2006, 14, 132-140.	3.5	66
47	14-3-3 Binding Sites in the Snail Protein Are Essential for Snail-Mediated Transcriptional Repression and Epithelial-Mesenchymal Differentiation. Cancer Research, 2010, 70, 4385-4393.	0.4	66
48	ldentification of <i>MEF2B</i> , <i>EBF1</i> , and <i>IL6R</i> as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. Journal of Virology, 2016, 90, 345-355.	1.5	66
49	CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nature Communications, 2017, 8, 2114.	5.8	66
50	Identification of Host-Chromosome Binding Sites and Candidate Gene Targets for Kaposi's Sarcoma-Associated Herpesvirus LANA. Journal of Virology, 2012, 86, 5752-5762.	1.5	65
51	Telomere Repeat Binding Factors TRF1, TRF2, and hRAP1 Modulate Replication of Epstein-Barr Virus OriP. Journal of Virology, 2003, 77, 11992-12001.	1.5	64
52	Inhibition of Epstein-Barr Virus OriP Function by Tankyrase, a Telomere-Associated Poly-ADP Ribose Polymerase That Binds and Modifies EBNA1. Journal of Virology, 2005, 79, 4640-4650.	1.5	64
53	Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Research, 2014, 24, 1039-1050.	2.4	64
54	Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle, 2012, 11, 2337-2347.	1.3	61

#	Article	IF	CITATIONS
55	Chromatin organization and virus gene expression. Journal of Cellular Physiology, 2008, 216, 295-302.	2.0	60
56	Control of Viral Latency by Episome Maintenance Proteins. Trends in Microbiology, 2020, 28, 150-162.	3.5	60
57	Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. Journal of Cell Science, 2012, 125, 4383-94.	1.2	58
58	Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico Virtual Screening. PLoS ONE, 2010, 5, e10126.	1.1	58
59	Chromatin organization of gammaherpesvirus latent genomes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 236-245.	0.9	56
60	Initiation of Epstein-Barr Virus Lytic Replication Requires Transcription and the Formation of a Stable RNA-DNA Hybrid Molecule at OriLyt. Journal of Virology, 2011, 85, 2837-2850.	1.5	56
61	Regulation of Epstein-Barr Virus OriP Replication by Poly(ADP-Ribose) Polymerase 1. Journal of Virology, 2010, 84, 4988-4997.	1.5	55
62	Transcription Factor IIA Derepresses TATA-binding Protein (TBP)-associated Factor Inhibition of TBP-DNA Binding. Journal of Biological Chemistry, 1998, 273, 14293-14300.	1.6	54
63	A Testis-specific Transcription Factor IIA (TFIIAÏ,,) Stimulates TATA-binding Protein-DNA Binding and Transcription Activation. Journal of Biological Chemistry, 2000, 275, 122-128.	1.6	54
64	EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jl° and EBF1. PLoS Pathogens, 2016, 12, e1005339.	2.1	54
65	TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Scientific Reports, 2021, 11, 3509.	1.6	53
66	Epigenetic Deregulation of the LMP1/LMP2 Locus of Epstein-Barr Virus by Mutation of a Single CTCF-Cohesin Binding Site. Journal of Virology, 2014, 88, 1703-1713.	1.5	52
67	Subtelomeric p53 binding prevents accumulation of <scp>DNA</scp> damage at human telomeres. EMBO Journal, 2016, 35, 193-207.	3.5	52
68	Epstein-Barr Virus Immediate-Early Protein Zta Co-Opts Mitochondrial Single-Stranded DNA Binding Protein To Promote Viral and Inhibit Mitochondrial DNA Replication. Journal of Virology, 2008, 82, 4647-4655.	1.5	49
69	Mechanism of Glycyrrhizic Acid Inhibition of Kaposi's Sarcoma-Associated Herpesvirus: Disruption of CTCF-Cohesin-Mediated RNA Polymerase II Pausing and Sister Chromatid Cohesion. Journal of Virology, 2011, 85, 11159-11169.	1.5	49
70	Epigenetic regulation of EBV and KSHV latency. Current Opinion in Virology, 2013, 3, 251-259.	2.6	49
71	Interpreting the Epstein-Barr Virus (EBV) Epigenome Using High-Throughput Data. Viruses, 2013, 5, 1042-1054.	1.5	47
72	The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biology, 2016, 13, 690-695.	1.5	47

#	Article	IF	CITATIONS
73	Transcription Factor IIA Mutations Show Activator-specific Defects and Reveal a IIA Function Distinct from Stimulation of TBP-DNA Binding. Journal of Biological Chemistry, 1996, 271, 11182-11190.	1.6	46
74	Cell Cycle Control of Kaposi's Sarcoma-Associated Herpesvirus Latency Transcription by CTCF-Cohesin Interactions. Journal of Virology, 2009, 83, 6199-6210.	1.5	46
75	An Imperfect Correlation between DNA Replication Activity of Epstein–Barr Virus Nuclear Antigen 1 (EBNA1) and Binding to the Nuclear Import Receptor, Rch1/importin α. Virology, 1997, 239, 340-351.	1.1	45
76	Association of Transcription Factor IIA with TATA Binding Protein Is Required for Transcriptional Activation of a Subset of Promoters and Cell Cycle Progression in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1998, 18, 2559-2570.	1.1	45
77	Viral Reprogramming of the Daxx Histone H3.3 Chaperone during Early Epstein-Barr Virus Infection. Journal of Virology, 2014, 88, 14350-14363.	1.5	45
78	CTCF Binding to the First Intron of the Major Immediate Early (MIE) Gene of Human Cytomegalovirus (HCMV) Negatively Regulates MIE Gene Expression and HCMV Replication. Journal of Virology, 2014, 88, 7389-7401.	1.5	45
79	Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nature Communications, 2020, 11, 877.	5.8	45
80	RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathogens, 2018, 14, e1006844.	2.1	44
81	Epstein-Barr Virus Episome Stability Is Coupled to a Delay in Replication Timing. Journal of Virology, 2009, 83, 2154-2162.	1.5	42
82	Development of a High-Throughput Screen for Inhibitors of Epstein-Barr Virus EBNA1. Journal of Biomolecular Screening, 2010, 15, 1107-1115.	2.6	42
83	Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene, 2018, 37, 4058-4072.	2.6	42
84	Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency. Oncotarget, 2017, 8, 7248-7264.	0.8	42
85	The CBP Bromodomain and Nucleosome Targeting Are Required for Zta-Directed Nucleosome Acetylation and Transcription Activation. Molecular and Cellular Biology, 2003, 23, 2633-2644.	1.1	41
86	BET-Inhibitors Disrupt Rad21-Dependent Conformational Control of KSHV Latency. PLoS Pathogens, 2017, 13, e1006100.	2.1	41
87	ARID1A promotes genomic stability through protecting telomere cohesion. Nature Communications, 2019, 10, 4067.	5.8	40
88	CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Scientific Reports, 2017, 7, 39861.	1.6	38
89	Cell Cycle Association of the Retinoblastoma Protein Rb and the Histone Demethylase LSD1 with the Epstein-Barr Virus Latency Promoter Cp. Journal of Virology, 2008, 82, 3428-3437.	1.5	34
90	CTCF Regulates Kaposi's Sarcoma-Associated Herpesvirus Latency Transcription by Nucleosome Displacement and RNA Polymerase Programming. Journal of Virology, 2013, 87, 1789-1799.	1.5	34

#	Article	IF	CITATIONS
91	Bioactive activities of natural products against herpesvirus infection. Journal of Microbiology, 2013, 51, 545-551.	1.3	33
92	Chromatin Structure of Epstein–Barr Virus Latent Episomes. Current Topics in Microbiology and Immunology, 2015, 390, 71-102.	0.7	32
93	Cleavage of TFIIA by Taspase1 Activates TRF2-Specified Mammalian Male Germ Cell Programs. Developmental Cell, 2013, 27, 188-200.	3.1	31
94	Telomeres and viruses: common themes of genome maintenance. Frontiers in Oncology, 2012, 2, 201.	1.3	30
95	LANA oligomeric architecture is essential for KSHV nuclear body formation and viral genome maintenance during latency. PLoS Pathogens, 2019, 15, e1007489.	2.1	30
96	The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nature Communications, 2022, 13, 187.	5.8	30
97	Identification of Acidic and Aromatic Residues in the Zta Activation Domain Essential for Epstein-Barr Virus Reactivation. Journal of Virology, 2001, 75, 10334-10347.	1.5	29
98	A Redox-Sensitive Cysteine in Zta Is Required for Epstein-Barr Virus Lytic Cycle DNA Replication. Journal of Virology, 2005, 79, 13298-13309.	1.5	29
99	Epigenetic Control of Replication Origins. Cell Cycle, 2005, 4, 889-892.	1.3	29
100	A Role for MRE11, NBS1, and Recombination Junctions in Replication and Stable Maintenance of EBV Episomes. PLoS ONE, 2007, 2, e1257.	1.1	28
101	HSV-1 Remodels Host Telomeres to Facilitate Viral Replication. Cell Reports, 2014, 9, 2263-2278.	2.9	28
102	Identification of a New Class of Small Molecules That Efficiently Reactivate Latent Epstein–Barr Virus. ACS Chemical Biology, 2014, 9, 785-795.	1.6	27
103	Structural basis underlying viral hijacking of a histone chaperone complex. Nature Communications, 2016, 7, 12707.	5.8	27
104	Simian Virus 40 Large T Antigen Stabilizes the TATA-Binding Protein–TFIIA Complex on the TATA Element. Molecular and Cellular Biology, 1998, 18, 3926-3935.	1.1	26
105	The Replisome Pausing Factor Timeless Is Required for Episomal Maintenance of Latent Epstein-Barr Virus. Journal of Virology, 2011, 85, 5853-5863.	1.5	26
106	Timeless-Dependent DNA Replication-Coupled Recombination Promotes Kaposi's Sarcoma-Associated Herpesvirus Episome Maintenance and Terminal Repeat Stability. Journal of Virology, 2013, 87, 3699-3709.	1.5	26
107	Epstein-Barr virus infection in the development of neurological disorders. Drug Discovery Today: Disease Models, 2020, 32, 35-52.	1.2	26
108	Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage. PLoS Pathogens, 2017, 13, e1006596.	2.1	25

#	Article	IF	CITATIONS
109	Lymphomas driven by Epstein–Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2. Oncogene, 2018, 37, 3998-4012.	2.6	25
110	Phase separation and DAXX redistribution contribute to LANA nuclear body and KSHV genome dynamics during latency and reactivation. PLoS Pathogens, 2021, 17, e1009231.	2.1	25
111	Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell, 2021, 184, 643-654.e13.	13.5	24
112	Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of Latent Epstein-Barr Virus. Journal of Virology, 2017, 91, .	1.5	23
113	Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Research, 2018, 46, 972-984.	6.5	22
114	A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathogens, 2021, 17, e1009208.	2.1	21
115	TAFII 250 Phosphorylates Human Transcription Factor IIA on Serine Residues Important for TBP Binding and Transcription Activity. Journal of Biological Chemistry, 2001, 276, 15886-15892.	1.6	20
116	Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance. Journal of Virology, 2017, 91, .	1.5	20
117	TRF2 Mediates Replication Initiation within Human Telomeres to Prevent Telomere Dysfunction. Cell Reports, 2020, 33, 108379.	2.9	20
118	Epigenetic Plasticity Enables CNS-Trafficking of EBV-infected B Lymphocytes. PLoS Pathogens, 2021, 17, e1009618.	2.1	20
119	Oncogenic Viruses as Entropic Drivers of Cancer Evolution. Frontiers in Virology, 2021, 1, .	0.7	20
120	Timeless Links Replication Termination to Mitotic Kinase Activation. PLoS ONE, 2011, 6, e19596.	1.1	19
121	EBNA1 inhibitors have potent and selective antitumor activity in xenograft models of Epstein–Barr virus-associated gastric cancer. Gastric Cancer, 2021, 24, 1076-1088.	2.7	19
122	Topoisomerase I and RecQL1 Function in Epstein-Barr Virus Lytic Reactivation. Journal of Virology, 2009, 83, 8090-8098.	1.5	18
123	Therapeutic doses of Hydroxyurea cause telomere dysfunction and reduce TRF2 binding to telomeres. Cancer Biology and Therapy, 2009, 8, 1136-1145.	1.5	17
124	DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma. Archives of Pharmacal Research, 2017, 40, 894-905.	2.7	17
125	KSHV-encoded LANA protects the cellular replication machinery from hypoxia induced degradation. PLoS Pathogens, 2019, 15, e1008025.	2.1	17
126	Phosphorylation of TFIIA Stimulates TATA Binding Protein-TATA Interaction and Contributes to Maximal Transcription and Viability in Yeast. Molecular and Cellular Biology, 1999, 19, 2846-2852.	1.1	16

#	Article	IF	CITATIONS
127	EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells. Virology Journal, 2014, 11, 12.	1.4	16
128	Gammaherpesvirus maintenance and replication during latency. , 2007, , 379-402.		15
129	Regulation of Epstein-Barr Virus Origin of Plasmid Replication (OriP) by the S-Phase Checkpoint Kinase Chk2. Journal of Virology, 2010, 84, 4979-4987.	1.5	15
130	Disruption of host antiviral resistances by gammaherpesvirus tegument proteins with homology to the FGARAT purine biosynthesis enzyme. Current Opinion in Virology, 2015, 14, 30-40.	2.6	15
131	The Telomeric Response to Viral Infection. Viruses, 2017, 9, 218.	1.5	15
132	Guilty by association: Epstein–Barr virus in multiple sclerosis. Nature Medicine, 2022, 28, 904-906.	15.2	15
133	Comparative transcriptome analysis of endemic and epidemic Kaposi's sarcoma (KS) lesions and the secondary role of HIV-1 in KS pathogenesis. PLoS Pathogens, 2020, 16, e1008681.	2.1	14
134	HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. Journal of Virology, 2016, 90, 5353-5367.	1.5	13
135	Initiation of lytic DNA replication in Epstein–Barr virus: search for a common family mechanism. Future Virology, 2010, 5, 65-83.	0.9	12
136	The mTOR inhibitor manassantin B reveals a crucial role of mTORC2 signaling in Epstein-Barr virus reactivation. Journal of Biological Chemistry, 2020, 295, 7431-7441.	1.6	12
137	KSHV-encoded vCyclin can modulate HIF1 $\hat{1}$ ± levels to promote DNA replication in hypoxia. ELife, 2021, 10, .	2.8	12
138	Structural Basis for Cooperative Binding of EBNA1 to the Epstein-Barr Virus Dyad Symmetry Minimal Origin of Replication. Journal of Virology, 2019, 93, .	1.5	11
139	Identification of Mubritinib (TAK 165) as an inhibitor of KSHV driven primary effusion lymphoma via disruption of mitochondrial OXPHOS metabolism. Oncotarget, 2020, 11, 4224-4242.	0.8	11
140	DNA Affinity Purification of Epstein-Barr Virus OriP-Binding Proteins. , 2005, 292, 267-276.		10
141	Evidence for DNA Hairpin Recognition by Zta at the Epstein-Barr Virus Origin of Lytic Replication. Journal of Virology, 2010, 84, 7073-7082.	1.5	10
142	Retrotransposonâ€derived p53 binding sites enhance telomere maintenance and genome protection. BioEssays, 2016, 38, 943-949.	1.2	10
143	A role for p53 in telomere protection. Molecular and Cellular Oncology, 2017, 4, e1143078.	0.3	10
144	EBNA2 driven enhancer switching at the CIITA-DEXI locus suppresses HLA class II gene expression during EBV infection of B-lymphocytes. PLoS Pathogens, 2021, 17, e1009834.	2.1	10

#	Article	IF	CITATIONS
145	Small molecule perturbation of the CAND1-Cullin1-ubiquitin cycle stabilizes p53 and triggers Epstein-Barr virus reactivation. PLoS Pathogens, 2017, 13, e1006517.	2.1	10
146	Epigenetic Landscape of HIV-1 Infection in Primary Human Macrophage. Journal of Virology, 2022, 96, e0016222.	1.5	10
147	Biophysical Screens Identify Fragments That Bind to the Viral DNA-Binding Proteins EBNA1 and LANA. Molecules, 2020, 25, 1760.	1.7	9
148	Kaposi's Sarcoma-Associated Herpesvirus Virion-Induced Transcription Activation of the ORF50 Immediate-Early Promoter. Journal of Virology, 2005, 79, 13180-13185.	1.5	8
149	CTCF-Induced Circular DNA Complexes Observed by Atomic Force Microscopy. Journal of Molecular Biology, 2018, 430, 759-776.	2.0	8
150	Identification of Protein Tyrosine Kinases Required for B-Cell- Receptor-Mediated Activation of an Epstein-Barr Virus Immediate-Early Gene Promoter. Journal of Virology, 2004, 78, 8543-8551.	1.5	7
151	Development of drugs for Epstein–Barr virus using high-throughput <i>in silico</i> virtual screening. Expert Opinion on Drug Discovery, 2010, 5, 1189-1203.	2.5	7
152	Development of a novel inducer for EBV lytic therapy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2259-2264.	1.0	7
153	Multivalent Sequence Recognition by Epstein-Barr Virus Zta Requires Cysteine 171 and an Extension of the Canonical B-ZIP Domain. Journal of Virology, 2006, 80, 10942-10949.	1.5	6
154	Therapeutic Vaccination against the Rhesus Lymphocryptovirus EBNA-1 Homologue, rhEBNA-1, Elicits T Cell Responses to Novel Epitopes in Rhesus Macaques. Journal of Virology, 2013, 87, 13904-13910.	1.5	6
155	Identification of Smallâ€Molecule PHD2 Zinc Finger Inhibitors that Activate Hypoxia Inducible Factor. ChemBioChem, 2016, 17, 2316-2323.	1.3	6
156	Defective Epstein-Barr Virus Genomes and Atypical Viral Gene Expression in B-Cell Lines Derived from Multiple Myeloma Patients. Journal of Virology, 2021, 95, e0008821.	1.5	6
157	TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast. PLoS ONE, 2018, 13, e0195698.	1.1	4
158	Elevated telomere dysfunction in cells containing the African-centric Pro47Ser cancer-risk variant of TP53. Oncotarget, 2019, 10, 3581-3591.	0.8	4
159	Resistance from the flanks: A role for telomere repeat factor 2 in chemotherapeutic drug resistance. Cancer Biology and Therapy, 2006, 5, 957-958.	1.5	3
160	DNA immunotherapy targeting BARF1 induces potent anti-tumor responses against Epstein-Barr-virus-associated carcinomas. Molecular Therapy - Oncolytics, 2022, 24, 218-229.	2.0	2
161	Chromatin in viral gene regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 181-181.	0.9	1
162	Editorial overview: Viruses and cancer. Current Opinion in Virology, 2015, 14, viii-x.	2.6	1

#	Article	IF	CITATIONS
163	Getting Back to the Basics of Translational Research. PLoS Pathogens, 2016, 12, e1005534.	2.1	0