Tongqing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4279953/publications.pdf

Version: 2024-02-01

140 papers 22,631 citations

61 h-index 135 g-index

166 all docs

166 docs citations

166 times ranked 17496 citing authors

#	Article	IF	CITATIONS
1	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93
2	SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. New England Journal of Medicine, 2022, 386, 1088-1091.	27.0	338
3	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	6.4	19
4	A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 2022, 28, 373-382.	30.7	16
5	SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio, 2022, 13, e0322721.	4.1	48
6	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	12.6	119
7	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	11.2	3
8	Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. Journal of Biological Chemistry, 2022, 298, 101819.	3.4	9
9	Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site. Structure, 2022, 30, 862-875.e4.	3.3	4
10	Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure, 2022, , .	3.3	1
11	LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Reports, 2022, 39, 110812.	6.4	287
12	Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS ONE, 2022, 17, e0268767.	2.5	18
13	Safety and immunogenicity of an HIV-1 prefusion-stabilized envelope trimer (Trimer 4571) vaccine in healthy adults: A first-in-human open-label, randomized, dose-escalation, phase 1 clinical trial. EClinicalMedicine, 2022, 48, 101477.	7.1	13
14	Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.	4.7	6
15	Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure, 2022, 30, 1233-1244.e7.	3.3	13
16	Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses. Vaccines, 2021, 9, 73.	4.4	24
17	Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. Immunity, 2021, 54, 324-339.e8.	14.3	36
18	Mutational fitness landscapes reveal genetic and structural improvement pathways for a vaccine-elicited HIV-1 broadly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	21

#	Article	IF	CITATIONS
19	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	6.4	12
20	High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLoS Pathogens, 2021, 17, e1009431.	4.7	34
21	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	11.0	444
22	Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Derived Class Antibodies That Neutralize Diverse Influenza A Viruses. Frontiers in Immunology, 2021, 12, 662909.	4.8	0
23	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
24	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373, .	12.6	174
25	Structural basis of LAIR1 targeting by polymorphic Plasmodium RIFINs. Nature Communications, 2021, 12, 4226.	12.8	1
26	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	56
27	Inâvitro and inâvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
28	Blocking \hat{l}_{\pm} ₄ \hat{l}_{\pm} ₇ integrin delays viral rebound in SHIV _{SF162P3} -infected macaques treated with anti-HIV broadly neutralizing antibodies. Science Translational Medicine, 2021, 13, .	12.4	11
29	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	3.6	4
30	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	6.4	38
31	SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.	3.4	9
32	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	14.5	40
33	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	6.4	5
34	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	6.4	59
35	Removal of variable domain $\langle i \rangle N \langle i \rangle$ -linked glycosylation as a means to improve the homogeneity of HIV-1 broadly neutralizing antibodies. MAbs, 2020, 12, 1836719.	5.2	4
36	Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28, 867-879.e5.	11.0	316

#	Article	IF	CITATIONS
37	Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host and Microbe, 2020, 28, 880-891.e8.	11.0	153
38	Automated Design by Structure-Based Stabilization and Consensus Repair to Achieve Prefusion-Closed Envelope Trimers in a Wide Variety of HIV Strains. Cell Reports, 2020, 33, 108432.	6.4	32
39	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	27.0	936
40	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	27.8	1,337
41	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	6.4	15
42	A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Scientific Reports, 2020, 10, 18149.	3.3	90
43	Identification and Structure of a Multidonor Class of Head-Directed Influenza-Neutralizing Antibodies Reveal the Mechanism for Its Recurrent Elicitation. Cell Reports, 2020, 32, 108088.	6.4	13
44	VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host and Microbe, 2020, 27, 531-543.e6.	11.0	23
45	Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural and Molecular Biology, 2020, 27, 726-734.	8.2	55
46	Preclinical Development of a Fusion Peptide Conjugate as an HIV Vaccine Immunogen. Scientific Reports, 2020, 10, 3032.	3.3	36
47	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. SSRN Electronic Journal, 2020, , 3639618.	0.4	3
48	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
49	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
50	A Single Substitution in gp41 Modulates the Neutralization Profile of SHIV during InÂVivo Adaptation. Cell Reports, 2019, 27, 2593-2607.e5.	6.4	8
51	Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies. PLoS Pathogens, 2019, 15, e1007819.	4.7	18
52	Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Science Immunology, 2019, 4, .	11.9	40
53	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
54	Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET. Nature, 2019, 568, 415-419.	27.8	156

#	Article	IF	CITATIONS
55	Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.	3.3	69
56	Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology, 2018, 92, .	3.4	155
57	A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity, 2018, 48, 500-513.e6.	14.3	66
58	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12265-12270.	7.1	70
59	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	4.7	36
60	Structural Features of Broadly Neutralizing Antibodies and Rational Design of Vaccine. Advances in Experimental Medicine and Biology, 2018, 1075, 73-95.	1.6	17
61	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
62	Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nature Structural and Molecular Biology, 2017, 24, 370-378.	8.2	94
63	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
64	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	6.4	160
65	Protection of calves by a prefusion-stabilized bovine RSV F vaccine. Npj Vaccines, 2017, 2, 7.	6.0	38
66	Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1. Journal of Molecular Biology, 2017, 429, 930-947.	4.2	82
67	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	12.6	225
68	Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.	6.4	69
69	Conformational Changes in HIV-1 Env Trimer Induced by a Single CD4 as Revealed by Cryo-EM. Microscopy and Microanalysis, 2017, 23, 1190-1191.	0.4	0
70	Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity. Journal of Biological Chemistry, 2017, 292, 446-461.	3. 4	152
71	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	4.7	51
72	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379

#	Article	IF	Citations
73	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
74	Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure, 2016, 24, 1346-1357.	3.3	35
75	Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity, 2016, 45, 1108-1121.	14.3	304
76	Platelet-derived growth factor- $\hat{l}\pm$ receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nature Microbiology, 2016, 1, 16082.	13.3	170
77	Spatiotemporal hierarchy in antibody recognition against transmitted HIV-1 envelope glycoprotein during natural infection. Retrovirology, 2016, 13, 12.	2.0	7
78	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
79	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
80	Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus. PLoS ONE, 2016, 11, e0159709.	2.5	27
81	A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus. PLoS ONE, 2015, 10, e0128779.	2.5	38
82	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
83	Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications, 2015, 6, 7712.	12.8	258
84	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	8.2	333
85	Eliminating antibody polyreactivity through addition of <i>N</i> â€linked glycosylation. Protein Science, 2015, 24, 1019-1030.	7.6	11
86	Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.	28.9	226
87	Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications, 2015, 6, 8447.	12.8	88
88	Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nature Communications, 2015, 6, 8223.	12.8	106
89	Transient Protein Expression Facilitates X-ray Structural Studies of HIV-1. AIDS Research and Human Retroviruses, 2014, 30, A148-A149.	1.1	0
90	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> Iournal of Virology, 2014, 88, 12669-12682.	3.4	248

#	Article	IF	Citations
91	CD4-binding-Site Recognition by VH1-46 Germline-derived HIV-1 Neutralizers. AIDS Research and Human Retroviruses, 2014, 30, A120-A121.	1.1	1
92	Structure of BMS-806, a Small-molecule HIV-1 Entry Inhibitor, Bound to BG505 SOSIP.664 HIV-1 Env Trimer. AIDS Research and Human Retroviruses, 2014, 30, A151-A151.	1.1	4
93	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
94	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
95	Transplanting Supersites of HIV-1 Vulnerability. PLoS ONE, 2014, 9, e99881.	2.5	51
96	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
97	Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody. Science, 2013, 340, 1113-1117.	12.6	656
98	Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04. Journal of Virology, 2013, 87, 2294-2306.	3.4	34
99	Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science, 2013, 342, 592-598.	12.6	797
100	Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 2013, 153, 126-138.	28.9	478
101	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
102	Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 2013, 340, 751-756.	12.6	213
103	Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site. Current Opinion in HIV and AIDS, 2013, 8, 382-392.	3.8	27
104	De novo identification of VRC01 class HIV-1–neutralizing antibodies by next-generation sequencing of B-cell transcripts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4088-97.	7.1	105
105	Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains. Journal of Virology, 2013, 87, 10047-10058.	3.4	64
106	PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4. Journal of Virology, 2012, 86, 4394-4403.	3.4	109
107	Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5663-5668.	7.1	222
108	Structural definition for a new modality of broad and potent antibody neutralization at the CD4-binding site on HIV-1 gp120. Retrovirology, 2012, 9, .	2.0	1

#	Article	IF	CITATIONS
109	Characteristics of HIV-1 gp120 molecules that bind ancestor, intermediate and mature forms of VRC01-like antibodies. Retrovirology, 2012, 9 , .	2.0	O
110	Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing. Science, 2011, 333, 1593-1602.	12.6	788
111	Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability. Journal of Virology, 2011, 85, 6687-6701.	3.4	113
112	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
113	Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 , 1166 - 1171 .	7.1	304
114	Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 2010, 329, 811-817.	12.6	1,050
115	Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 2010, 329, 856-861.	12.6	1,600
116	Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1. Journal of Virology, 2010, 84, 8098-8110.	3.4	209
117	Structural Biology and the Design of Effective Vaccines for HIV-1 and Other Viruses. , 2010, , 387-402.		4
118	Mechanism of Human Immunodeficiency Virus Type 1 Resistance to Monoclonal Antibody b12 That Effectively Targets the Site of CD4 Attachment. Journal of Virology, 2009, 83, 10892-10907.	3.4	86
119	Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site. PLoS Pathogens, 2009, 5, e1000445.	4.7	113
120	Enhanced Exposure of the CD4-Binding Site to Neutralizing Antibodies by Structural Design of a Membrane-Anchored Human Immunodeficiency Virus Type 1 gp120 Domain. Journal of Virology, 2009, 83, 5077-5086.	3.4	43
121	Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120. Science, 2009, 326, 1123-1127.	12.6	271
122	P09-13. Structure of HIV-1 gp41 interactive region: layered architecture and basis of conformational mobility. Retrovirology, 2009, 6, .	2.0	0
123	P09-05. Mechanism of HIV-1 resistance to a monoclonal antibody that effectively targets the site of CD4 attachment. Retrovirology, 2009, 6, .	2.0	0
124	Structural basis of HIV-1 gp120 conformational mobility. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s24-s24.	0.3	3
125	Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445, 732-737.	27.8	715
126	Interfacial metal and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14575-14580.	7.1	29

#	Article	IF	CITATIONS
127	Nonequivalence of the Nucleotide Binding Domains of the ArsA ATPase. Journal of Biological Chemistry, 2005, 280, 9921-9926.	3.4	10
128	Enhancing Protein Crystallization through Precipitant Synergy. Structure, 2003, 11, 1061-1070.	3.3	75
129	Unisite and Multisite Catalysis in the ArsA ATPase. Journal of Biological Chemistry, 2002, 277, 23815-23820.	3.4	13
130	A Kinetic Model for the Action of a Resistance Efflux Pump. Journal of Biological Chemistry, 2001, 276, 6378-6391.	3 . 4	16
131	Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump. Biochemical Journal, 2001, 360, 589.	3.7	9
132	Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump. Biochemical Journal, 2001, 360, 589-597.	3.7	10
133	Conformational Changes in Four Regions of the Escherichia coli ArsA ATPase Link ATP Hydrolysis to lon Translocation. Journal of Biological Chemistry, 2001, 276, 30414-30422.	3.4	38
134	The ATPase Mechanism of ArsA, the Catalytic Subunit of the Arsenite Pump. Journal of Biological Chemistry, 1999, 274, 16153-16161.	3 . 4	26
135	Asp45 Is a Mg2+ Ligand in the ArsA ATPase. Journal of Biological Chemistry, 1999, 274, 13854-13858.	3.4	18
136	Crystallization and preliminary X-ray analysis of the catalytic subunit of the ATP-dependent arsenite pump encoded by the Escherichia coli plasmid R773. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 921-924.	2.5	3
137	Mechanism of the ArsA ATPase. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 207-215.	2.6	53
138	Tryptophan Fluorescence Reports Nucleotide-induced Conformational Changes in a Domain of the ArsA ATPase. Journal of Biological Chemistry, 1997, 272, 19731-19737.	3.4	67
139	Interaction of substrate and effector binding sites in the ArsA ATPase. Biochemistry, 1995, 34, 13622-13626.	2.5	28
140	Paired Heavy and Light Chain Signatures Contribute to Potent SARS-CoV-2 Neutralization in Public Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	1