Hing Y Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4278968/publications.pdf

Version: 2024-02-01

56 papers

2,138 citations

236925 25 h-index 243625 44 g-index

64 all docs

64 docs citations

times ranked

64

3455 citing authors

#	Article	IF	CITATIONS
1	Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene, 2003, 22, 2466-2477.	5.9	206
2	Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy. European Urology, 2014, 66, 32-39.	1.9	139
3	Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene, 2005, 24, 2166-2174.	5.9	108
4	2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nature Communications, 2020, 11, 2508.	12.8	108
5	Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated With Patient Outcomes. Gastroenterology, 2014, 146, 1386-1396.e17.	1.3	100
6	<i>Sleeping Beauty</i> screen reveals <i>Pparg</i> activation in metastatic prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8290-8295.	7.1	91
7	Lipid pathway deregulation in advanced prostate cancer. Pharmacological Research, 2018, 131, 177-184.	7.1	85
8	Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine, 2016, 8, 103-116.	6.1	76
9	Bright insights into palladium-triggered local chemotherapy. Chemical Science, 2018, 9, 7354-7361.	7.4	75
10	Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. Journal of Clinical Investigation, 2013, 123, 1157-1175.	8.2	75
11	The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget, 2015, 6, 34358-34374.	1.8	68
12	Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. British Journal of Cancer, 2013, 108, 139-148.	6.4	52
13	HER2 overcomes PTEN (loss)-induced senescence to cause aggressive prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16392-16397.	7.1	51
14	Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale, 2019, 11, 20058-20071.	5.6	51
15	Effect of 18F-Fluciclovine Positron Emission Tomography on the Management of Patients With Recurrence of Prostate Cancer: Results From the FALCON Trial. International Journal of Radiation Oncology Biology Physics, 2020, 107, 316-324.	0.8	50
16	SPRY2 loss enhances ErbB trafficking and PI3K/AKT signalling to drive human and mouse prostate carcinogenesis. EMBO Molecular Medicine, 2012, 4, 776-790.	6.9	46
17	Advances in mouse models of prostate cancer. Expert Reviews in Molecular Medicine, 2008, 10, e16.	3.9	44
18	The RNA-binding protein hnRNPA2 regulates \hat{l}^2 -catenin protein expression and is overexpressed in prostate cancer. RNA Biology, 2014, 11, 755-765.	3.1	42

#	Article	IF	CITATIONS
19	Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells. BMC Cancer, 2015, 15, 9.	2.6	41
20	PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene, 2021, 40, 2355-2366.	5.9	41
21	Identification of Novel Androgen-Regulated Pathways and mRNA Isoforms through Genome-Wide Exon-Specific Profiling of the LNCaP Transcriptome. PLoS ONE, 2011, 6, e29088.	2.5	39
22	The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration. Scientific Reports, 2017, 7, 5249.	3.3	39
23	Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells. Nanoscale, 2018, 10, 22830-22847.	5.6	35
24	Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. British Journal of Cancer, 2020, 122, 517-527.	6.4	33
25	Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF- $\hat{l}\pm$, TRAIL, and interleukin-12. Drug Delivery, 2018, 25, 679-689.	5.7	31
26	A novel androgen-regulated isoform of the TSC2 tumour suppressor gene increases cell proliferation. Oncotarget, 2014, 5, 131-139.	1.8	27
27	Activation of \hat{I}^2 -Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer. Cancer Research, 2020, 80, 576-590.	0.9	26
28	The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells. Oncoscience, 2015, 2, 755-764.	2.2	23
29	Peri-prostatic Fat Volume Measurement as a Predictive Tool for Castration Resistance in Advanced Prostate Cancer. European Urology Focus, 2018, 4, 858-866.	3.1	22
30	Increased T-cell Infiltration Elicited by <i>Erk5</i> Deletion in a <i>Pten</i> -Deficient Mouse Model of Prostate Carcinogenesis. Cancer Research, 2017, 77, 3158-3168.	0.9	20
31	A review on the interactions between the tumor microenvironment and androgen receptor signaling in prostate cancer. Translational Research, 2019, 206, 91-106.	5.0	20
32	A 5-FU Precursor Designed to Evade Anabolic and Catabolic Drug Pathways and Activated by Pd Chemistry <i>In Vitro</i> and <i>In Vivo</i> Journal of Medicinal Chemistry, 2022, 65, 552-561.	6.4	20
33	Sprouty2 lossâ€induced IL 6 drives castrationâ€resistant prostate cancer through scavenger receptor B1. EMBO Molecular Medicine, 2018, 10, .	6.9	19
34	SLFN5 Regulates LAT1-Mediated mTOR Activation in Castration-Resistant Prostate Cancer. Cancer Research, 2021, 81, 3664-3678.	0.9	19
35	An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nature Communications, 2021, 12, 1623.	12.8	18
36	Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements. Cancers, 2022, 14, 1535.	3.7	18

#	Article	IF	CITATIONS
37	Feasibility study of a randomised controlled trial to compare (deferred) androgen deprivation therapy and cryotherapy in men with localised radiation-recurrent prostate cancer. British Journal of Cancer, 2014, 111, 424-429.	6.4	15
38	A functional genomics screen reveals a strong synergistic effect between docetaxel and the mitotic gene DLGAP5 that is mediated by the androgen receptor. Cell Death and Disease, 2018, 9, 1069.	6.3	15
39	In vivo CRISPR/Cas9 knockout screen: TCEAL1 silencing enhances docetaxel efficacy in prostate cancer. Life Science Alliance, 2020, 3, e202000770.	2.8	15
40	Octadecyl chain-bearing PEGylated poly(propyleneimine)-based dendrimersomes: physicochemical studies, redox-responsiveness, DNA condensation, cytotoxicity and gene delivery to cancer cells. Biomaterials Science, 2021, 9, 1431-1448.	5.4	13
41	18F-Fluciclovine PET metabolic imaging reveals prostate cancer tumour heterogeneity associated with disease resistance to androgen deprivation therapy. EJNMMI Research, 2020, 10, 143.	2.5	12
42	THEM6â€mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Molecular Medicine, 2022, 14, e14764.	6.9	12
43	Cyclocreatine Suppresses Creatine Metabolism and Impairs Prostate Cancer Progression. Cancer Research, 2022, 82, 2565-2575.	0.9	12
44	Introduction to the National Cancer Imaging Translational Accelerator (NCITA): a UK-wide infrastructure for multicentre clinical translation of cancer imaging biomarkers. British Journal of Cancer, 2021, 125, 1462-1465.	6.4	11
45	Decision analytic cost-effectiveness model to compare prostate cryotherapy to androgen deprivation therapy for treatment of radiation recurrent prostate cancer. BMJ Open, 2015, 5, e007925.	1.9	10
46	BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration. Oncogene, 2020, 39, 1797-1806.	5.9	10
47	Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity. Scientific Reports, 2017, 7, 13241.	3.3	9
48	Androgen receptor phosphorylation at serine 81 and serine 213 in castrate-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 596-606.	3.9	7
49	Gene Regulation Network Analysis on Human Prostate Orthografts Highlights a Potential Role for the JMJD6 Regulon in Clinical Prostate Cancer. Cancers, 2021, 13, 2094.	3.7	6
50	Analysis of Prostate Cancer Tumor Microenvironment Identifies Reduced Stromal CD4 Effector T-cell Infiltration in Tumors with Pelvic Nodal Metastasis. European Urology Open Science, 2021, 29, 19-29.	0.4	6
51	Modelling synergistic interactions between HER2, Sprouty2 and PTEN in driving prostate carcinogenesis. Asian Journal of Andrology, 2013, 15, 323-327.	1.6	6
52	Targeting the BAF complex in advanced prostate cancer. Expert Opinion on Drug Discovery, 2021, 16, 173-181.	5.0	5
53	HER2 Mediates PSMA/mGluR1-Driven Resistance to the DS-7423 Dual PI3K/mTOR Inhibitor in PTEN Wild-type Prostate Cancer Models. Molecular Cancer Therapeutics, 2022, 21, 667-676.	4.1	5
54	Multi-omics & Dathway analysis identify potential roles for tumor N-acetyl aspartate accumulation in murine models of castration-resistant prostate cancer. IScience, 2022, 25, 104056.	4.1	5

HING Y LEUNG

#	Article	IF	CITATION
55	Phase <scp>II</scp> Proof of Concept Study of Atorvastatin in Castration Resistant Prostate Cancer. BJU International, 0, , .	2.5	2
56	Developing a coordinate-based strategy to support cognitive targeted prostate biopsies and correlative spatial-histopathological outcome analysis. Asian Journal of Andrology, 2021, 23, 231.	1.6	0