Erik A Sahai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4278506/publications.pdf

Version: 2024-02-01

21521 14644 27,134 111 66 114 citations h-index g-index papers 122 122 122 34208 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	12.8	2,012
2	RHO–GTPases and cancer. Nature Reviews Cancer, 2002, 2, 133-142.	12.8	1,318
3	Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 2007, 9, 1392-1400.	4.6	1,281
4	NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 2018, 172, 1022-1037.e14.	13.5	1,187
5	Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biology, 2001, 3, 339-345.	4.6	1,099
6	Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 2013, 15, 637-646.	4.6	1,088
7	Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biology, 2003, 5, 711-719.	4.6	1,021
8	Rac Activation and Inactivation Control Plasticity of Tumor Cell Movement. Cell, 2008, 135, 510-523.	13.5	856
9	Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell, 2015, 162, 1257-1270.	13.5	840
10	Classifying collective cancer cell invasion. Nature Cell Biology, 2012, 14, 777-783.	4.6	807
11	Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop. Cancer Research, 2005, 65, 5278-5283.	0.4	660
12	Physical influences of the extracellular environment on cell migration. Nature Reviews Molecular Cell Biology, 2014, 15, 813-824.	16.1	585
13	A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts toÂdrive cancer cell invasion. Nature Cell Biology, 2017, 19, 224-237.	4.6	567
14	Localized and reversible $TGF\hat{l}^2$ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology, 2009, 11, 1287-1296.	4.6	554
15	Illuminating the metastatic process. Nature Reviews Cancer, 2007, 7, 737-749.	12.8	503
16	Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin I ² 1/FAK Signaling. Cancer Cell, 2015, 27, 574-588.	7.7	485
17	The actin cytoskeleton in cancer cell motility. Clinical and Experimental Metastasis, 2009, 26, 273-87.	1.7	454
18	Mechanisms of cancer cell invasion. Current Opinion in Genetics and Development, 2005, 15, 87-96.	1.5	436

#	Article	lF	Citations
19	ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biology, 2002, 4, 408-415.	4.6	414
20	Identification and Testing of a Gene Expression Signature of Invasive Carcinoma Cells within Primary Mammary Tumors. Cancer Research, 2004, 64, 8585-8594.	0.4	399
21	ROCK- and Myosin-Dependent Matrix Deformation Enables Protease-Independent Tumor-Cell Invasion In Vivo. Current Biology, 2006, 16, 1515-1523.	1.8	399
22	Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nature Cell Biology, 2009, 11, 257-268.	4.6	368
23	ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell, 2003, 4, 67-79.	7.7	354
24	Diaphanous-Related Formins Bridge Rho GTPase and Src Tyrosine Kinase Signaling. Molecular Cell, 2000, 5, 13-25.	4.5	352
25	Regulators of Mitotic Arrest and Ceramide Metabolism Are Determinants of Sensitivity to Paclitaxel and Other Chemotherapeutic Drugs. Cancer Cell, 2007, 11, 498-512.	7.7	351
26	Deficits in axonal transport precede ALS symptoms in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20523-20528.	3.3	351
27	ROCK and JAK1 Signaling Cooperate to Control Actomyosin Contractility in Tumor Cells and Stroma. Cancer Cell, 2011, 20, 229-245.	7.7	342
28	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	2.2	320
29	Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nature Cell Biology, 2011, 13, 49-59.	4.6	319
30	Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nature Cell Biology, 2013, 15, 751-762.	4.6	282
31	Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026781.	2.9	278
32	Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature, 2014, 514, 498-502.	13.7	264
33	PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nature Cell Biology, 2008, 10, 127-137.	4.6	252
34	Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends in Cell Biology, 2005, 15, 138-145.	3.6	248
35	A Mena Invasion Isoform Potentiates EGF-Induced Carcinoma Cell Invasion and Metastasis. Developmental Cell, 2008, 15, 813-828.	3.1	242
36	Integrin signalling regulates YAP/TAZ to control skin homeostasis. Development (Cambridge), 2016, 143, 1674-87.	1.2	228

#	Article	IF	Citations
37	New dimensions in cell migration. Nature Reviews Molecular Cell Biology, 2012, 13, 743-747.	16.1	212
38	Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 2018, 20, 766-774.	4.6	201
39	Transformation mediated by RhoA requires activity of ROCK kinases. Current Biology, 1999, 9, 136-145.	1.8	199
40	Oncogenic BRAF Induces Melanoma Cell Invasion by Downregulating the cGMP-Specific Phosphodiesterase PDE5A. Cancer Cell, 2011, 19, 45-57.	7.7	190
41	Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Reports, 2015, 13, 2456-2469.	2.9	190
42	Intravital Imaging Reveals Transient Changes in Pigment Production and Brn2 Expression during Metastatic Melanoma Dissemination. Cancer Research, 2009, 69, 7969-7977.	0.4	189
43	A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation. Cell Reports, 2018, 23, 1239-1248.	2.9	188
44	Epidermal Growth Factor Receptor Overexpression Results in Increased Tumor Cell Motility In vivo Coordinately with Enhanced Intravasation and Metastasis. Cancer Research, 2006, 66, 192-197.	0.4	174
45	Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. Journal of Cell Biology, 2007, 176, 35-42.	2.3	170
46	Cancer Disseminationâ€"Lessons from Leukocytes. Developmental Cell, 2010, 19, 13-26.	3.1	168
47	Conditional ROCK Activation In vivo Induces Tumor Cell Dissemination and Angiogenesis. Cancer Research, 2004, 64, 8994-9001.	0.4	158
48	LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. Journal of Cell Biology, 2010, 191, 169-185.	2.3	158
49	STRIPAK components determine mode of cancer cell migration and metastasis. Nature Cell Biology, 2015, 17, 68-80.	4.6	158
50	Regulation of Mitogen-Activated Protein Kinases in Cardiac Myocytes through the Small G Protein Rac1. Molecular and Cellular Biology, 2001, 21, 1173-1184.	1.1	143
51	MST kinases in development and disease. Journal of Cell Biology, 2015, 210, 871-882.	2.3	138
52	Mesoscale physical principles of collective cell organization. Nature Physics, 2018, 14, 671-682.	6.5	128
53	Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nature Communications, 2016, 7, 10305.	5.8	127
54	Hypoxia and loss of <scp>PHD</scp> 2 inactivate stromal fibroblasts to decrease tumour stiffness andÂmetastasis. EMBO Reports, 2015, 16, 1394-1408.	2.0	120

#	Article	IF	CITATIONS
55	Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnology, 2005, 5, 14.	1.7	119
56	In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. Journal of Cell Science, 2012, 125, 858-868.	1.2	116
57	Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 2013, 230, 107-117.	2.1	116
58	Rho Kinase Inhibitors Block Melanoma Cell Migration and Inhibit Metastasis. Cancer Research, 2015, 75, 2272-2284.	0.4	114
59	Cdc42EP3/BORG2 and Septin Network Enables Mechano-transduction and the Emergence of Cancer-Associated Fibroblasts. Cell Reports, 2015, 13, 2699-2714.	2.9	106
60	Melanoma invasion? current knowledge and future directions. Pigment Cell & Melanoma Research, 2007, 20, 161-172.	4.0	99
61	Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export. Cell Systems, 2018, 6, 692-708.e13.	2.9	98
62	Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Science Immunology, 2019, 4, .	5.6	93
63	Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nature Communications, 2017, 8, 16013.	5.8	87
64	SnapShot: Cancer-Associated Fibroblasts. Cell, 2020, 181, 486-486.e1.	13.5	85
65	Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nature Materials, 2020, 19, 227-238.	13.3	82
66	A FIJI macro for quantifying pattern in extracellular matrix. Life Science Alliance, 2021, 4, e202000880.	1.3	75
67	RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nature Cell Biology, 2011, 13, 819-826.	4.6	73
68	Cell communication networks in cancer invasion. Current Opinion in Cell Biology, 2011, 23, 621-629.	2.6	73
69	Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Reports, 2021, 34, 108750.	2.9	68
70	Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nature Cell Biology, 2020, 22, 289-296.	4.6	67
71	Tumor Cell Migration in Three Dimensions. Methods in Enzymology, 2006, 406, 625-643.	0.4	60
72	Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells. Journal of Cell Biology, 2018, 217, 195-209.	2.3	59

#	Article	IF	CITATIONS
73	TRPS1 shapes YAP/TEAD-dependent transcription in breast cancer cells. Nature Communications, 2018, 9, 3115.	5.8	58
74	Intravital Imaging Illuminates Transforming Growth Factor \hat{l}^2 Signaling Switches during Metastasis. Cancer Research, 2010, 70, 3435-3439.	0.4	56
75	Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination. Journal of the National Cancer Institute, 2016, 108, djv289.	3.0	53
76	Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nature Communications, 2020, 11, 6245.	5.8	51
77	Selection of metastasis competent subclones in the tumour interior. Nature Ecology and Evolution, 2021, 5, 1033-1045.	3.4	50
78	STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nature Cell Biology, 2020, 22, 758-766.	4.6	49
79	BCL6 suppresses RhoA activity to alter macrophage morphology and motility. Journal of Cell Science, 2005, 118, 1873-1883.	1.2	47
80	Extrinsic factors can mediate resistance to <scp>BRAF</scp> inhibition in central nervous system melanoma metastases. Pigment Cell and Melanoma Research, 2016, 29, 92-100.	1.5	44
81	Topological Tumor Graphs: A Graph-Based Spatial Model to Infer Stromal Recruitment for Immunosuppression in Melanoma Histology. Cancer Research, 2020, 80, 1199-1209.	0.4	43
82	Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy. Nature Communications, 2018, 9, 2662.	5.8	37
83	Purification of TAT 3 Exoenzyme. Methods in Enzymology, 2006, 406, 128-140.	0.4	34
84	Arkadia Regulates Tumor Metastasis by Modulation of the TGF- \hat{l}^2 Pathway. Cancer Research, 2013, 73, 1800-1810.	0.4	33
85	In vitro Models of Breast Cancer Metastatic Dormancy. Frontiers in Cell and Developmental Biology, 2020, 8, 37.	1.8	32
86	Imaging Tumor Cell Movement In Vivo. Current Protocols in Cell Biology, 2013, 58, Unit19.7.	2.3	30
87	Spatial patterns of tumour growth impact clonal diversification in a computational model and the TRACERx Renal study. Nature Ecology and Evolution, 2022, 6, 88-102.	3.4	30
88	Parameter estimation in fluorescence recovery after photobleaching: quantitative analysis of protein binding reactions and diffusion. Journal of Mathematical Biology, 2021, 83, 1.	0.8	29
89	Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology]. BMC Developmental Biology, 2009, 9, 14.	2.1	28
90	Integrating Models to Quantify Environment-Mediated Drug Resistance. Cancer Research, 2017, 77, 5409-5418.	0.4	27

#	Article	IF	CITATIONS
91	Cost–benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments. Journal of the Royal Society Interface, 2015, 12, 20141355.	1.5	26
92	An open data ecosystem for cell migration research. Trends in Cell Biology, 2015, 25, 55-58.	3.6	26
93	Imaging Tumor Cell Movement In Vivo. Current Protocols in Cell Biology, 2007, 35, Unit 19.7.	2.3	24
94	Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis, 2014, 35, 396-406.	1.3	23
95	Matrix feedback enables diverse higher-order patterning of the extracellular matrix. PLoS Computational Biology, 2019, 15, e1007251.	1.5	20
96	Intravital imaging reveals conversion between distinct tumor vascular morphologies and localized vascular response to Sunitinib. Intravital, 2013, 2, e24790.	2.0	18
97	p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis. Nature Communications, 2016, 7, 13874.	5.8	17
98	The Brain Microenvironment Induces DNMT1 Suppression and Indolence of Metastatic Cancer Cells. IScience, 2020, 23, 101480.	1.9	17
99	An optogenetic method for interrogating YAP1 and TAZ nuclear–cytoplasmic shuttling. Journal of Cell Science, 2021, 134, .	1.2	16
100	Retrograde flow of cadherins in collective cell migration. Nature Cell Biology, 2014, 16, 621-623.	4.6	14
101	EphB6 Regulates TFEB-Lysosomal Pathway and Survival of Disseminated Indolent Breast Cancer Cells. Cancers, 2021, 13, 1079.	1.7	14
102	Stochastic Regulation of her 1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling. PLoS Computational Biology, 2015, 11, e1004459.	1.5	14
103	Recruitment of dendritic cell progenitors to foci of influenza A virus infection sustains immunity. Science Immunology, 2021, 6, eabi9331.	5.6	14
104	CAFs and Cancer Cells Co-Migration in 3D Spheroid Invasion Assay. Methods in Molecular Biology, 2021, 2179, 243-256.	0.4	13
105	A Lung Organotypic Coculture Reveals a Role for TFEB-Lysosomal Axis in the Survival of Disseminated Dormant Cancer Cells. Cancers, 2021, 13, 1007.	1.7	6
106	Integrin-independent movement of immune cells. F1000 Biology Reports, 2009, 1, 67.	4.0	6
107	Checking out the neighbourhood. Nature Reviews Molecular Cell Biology, 2010, 11, 753-753.	16.1	1
108	Erik Sahai: Getting the whole picture of metastasis. Journal of Cell Biology, 2011, 193, 428-429.	2.3	1

#	Article	IF	CITATIONS
109	Editorial overview: Cell adhesion and migration. Current Opinion in Cell Biology, 2014, 30, v-vi.	2.6	1
110	Chris Marshall 1949–2015. Nature Cell Biology, 2015, 17, 1229-1229.	4.6	1
111	Intravital Microscopy to Visualize Invasion and Metastasis. , 0, , 40-54.		O