Norbert Kruger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4277831/publications.pdf

Version: 2024-02-01

279798 114465 4,520 124 23 63 citations h-index g-index papers 131 131 131 3089 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	HRI-Gestures: Gesture Recognition for Human-Robot Interaction. , 2022, , .		1
2	Multi-view object pose distribution tracking for pre-grasp planning on mobile robots. , 2022, , .		3
3	Multi-modal Proactive Approaching of Humans for Human-Robot Cooperative Tasks., 2021,,.		4
4	Context-aware Social Robot Navigation. , 2021, , .		0
5	Context-aware Social Robot Navigation. , 2021, , .		2
6	Don't Be Afraid! Design ofÂaÂPlayful Cleaning Robot forÂPeople withÂDementia. Communications in Computer and Information Science, 2021, , 141-155.	0.5	0
7	Bibo theÂDancing Cup: Reminding People withÂDementia toÂDrink. Communications in Computer and Information Science, 2021, , 127-140.	0.5	1
8	SMOOTH Robot: Design for a Novel Modular Welfare Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 98, 19-37.	3.4	19
9	Synthetic Ground Truth for Presegmentation of Known Objects for Effortless Pose Estimation. , 2020, , .		0
10	Intention Indication for Human Aware Robot Navigation. , 2020, , .		3
11	Cut & Combine: reuse of robot action components based on simple language instructions. International Journal of Robotics Research, 2019, 38, 1179-1207.	8.5	4
12	Automated Fixture Design Using an Imprint-Based Design Approach & Optimisation in Simulation. , 2019, , .		0
13	Robot technology for future welfare: meeting upcoming societal challenges $\hat{a}\in$ " an outlook with offset in the development in Scandinavia. Health and Technology, 2019, 9, 197-218.	3.6	27
14	Combined Optimization of Gripper Finger Design and Pose Estimation Processes for Advanced Industrial Assembly. , 2019, , .		4
15	Using spatial constraints for fast set-up of precise pose estimation in an industrial setting. , 2019, , .		9
16	An Adaptive Robotic System for Doing Pick and Place Operations with Deformable Objects. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 94, 81-100.	3.4	27
17	The Penguin – On the Boundary Between Pet and Machine. An Ecological Perspective on the Design of Assistive Robots for Elderly Care. Lecture Notes in Computer Science, 2019, , 425-443.	1.3	3
18	Teaching a Robot the Semantics of Assembly Tasks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 670-692.	9.3	46

#	Article	IF	CITATIONS
19	A performance evaluation of point pair features. Computer Vision and Image Understanding, 2018, 166, 66-80.	4.7	29
20	Integrating multi-purpose natural language understanding, robot's memory, and symbolic planning for task execution in humanoid robots. Robotics and Autonomous Systems, 2018, 99, 148-165.	5.1	16
21	Compensating Pose Uncertainties through Appropriate Gripper Finger Cutouts. Acta Mechanica Et Automatica, 2018, 12, 78-83.	0.6	8
22	Multi-view object instance recognition in an industrial context. Robotica, 2017, 35, 271-292.	1.9	6
23	Designing Fingers in Simulation based on Imprints. , 2017, , .		5
24	Optimizing grippers for compensating pose uncertainties by dynamic simulation. , 2016, , .		1
25	A Large-Scale 3D Object Recognition Dataset. , 2016, , .		9
26	Local shape feature fusion for improved matching, pose estimation and 3D object recognition. SpringerPlus, 2016, 5, 297.	1,2	25
27	A comparison of feature detectors and descriptors for object class matching. Neurocomputing, 2016, 184, 3-12.	5.9	20
28	A Required Paradigm Shift in Today's Vision Research. KI - Kunstliche Intelligenz, 2015, 29, 89-94.	3.2	1
29	Identifying relevant feature-action associations for grasping unmodelled objects. Paladyn, 2015, 6, .	2.7	0
30	Multi-label Object Categorization Using Histograms of Global Relations. , 2015, , .		1
31	Spatial constraint identification of parts in SE3 for action optimization. , $2015, \ldots$		2
32	Object detection using categorised 3D edges. Proceedings of SPIE, 2015, , .	0.8	3
33	What We Can Learn From the Primate's Visual System. KI - Kunstliche Intelligenz, 2015, 29, 9-18.	3.2	2
34	Special Issue on Bio-inspired Vision Systems. KI - Kunstliche Intelligenz, 2015, 29, 5-7.	3.2	0
35	On transferability and contexts when using simulated grasp databases. Robotica, 2015, 33, 1131-1146.	1.9	1
36	Teach it Yourself - Fast Modeling of Industrial Objects for 6D Pose Estimation. Lecture Notes in Computer Science, 2015, , 289-302.	1.3	1

3

#	Article	IF	Citations
37	Structural Bootstrappingâ€"A Novel, Generative Mechanism for Faster and More Efficient Acquisition of Action-Knowledge. IEEE Transactions on Autonomous Mental Development, 2015, 7, 140-154.	1.6	21
38	Affordance Estimation Enhances Artificial Visual Attention: Evidence from a Change-Blindness Study. Cognitive Computation, 2015, 7, 526-538.	5.2	3
39	Task and context sensitive optimization of gripper design using dynamic grasp simulation. , 2015, , .		10
40	Optimizing Pick and Place Operations in a Simulated Work Cell For Deformable 3D Objects. Lecture Notes in Computer Science, 2015, , 431-444.	1.3	3
41	Object Detection Using a Combination of Multiple 3D Feature Descriptors. Lecture Notes in Computer Science, 2015, , 343-353.	1.3	2
42	Adaptation of manipulation skills in physical contact with the environment to reference force profiles. Autonomous Robots, 2015, 39, 199-217.	4.8	100
43	Using surfaces and surface relations in an Early Cognitive Vision system. Machine Vision and Applications, 2015, 26, 933-954.	2.7	2
44	Real-time extraction of surface patches with associated uncertainties by means of Kinect cameras. Journal of Real-Time Image Processing, 2015, 10, 105-118.	3.5	20
45	Indoor Objects and Outdoor Urban Scenes Recognition by 3D Visual Primitives. Lecture Notes in Computer Science, 2015, , 270-285.	1.3	1
46	Shape Dependency of ICP Pose Uncertainties in the Context of Pose Estimation Systems. Lecture Notes in Computer Science, 2015, , 303-315.	1.3	1
47	Extracting Categories by Hierarchical Clustering Using Global Relational Features. Lecture Notes in Computer Science, 2015, , 541-551.	1.3	1
48	Error Feedback for Robust Learning from Demonstration. , 2015, , .		3
49	Technologies for the Fast Set-Up of Automated Assembly Processes. KI - Kunstliche Intelligenz, 2014, 28, 305-313.	3.2	17
50	In Search of Inliers: 3D Correspondence by Local and Global Voting. , 2014, , .		36
51	Learning spatial relationships from 3D vision using histograms. , 2014, , .		11
52	Statistics-based segmentation using a continuous-scale naive Bayes approach. Computers and Electronics in Agriculture, 2014, 109, 271-277.	7.7	8
53	An Adaptable Robot Vision System Performing Manipulation Actions With Flexible Objects. IEEE Transactions on Automation Science and Engineering, 2014, 11, 749-765.	5.2	51
54	A new benchmark for pose estimation with ground truth from virtual reality. Production Engineering, 2014, 8, 745-754.	2.3	5

#	Article	IF	CITATIONS
55	Teleoperation for learning by demonstration: Data glove versus object manipulation for intuitive robot control. , 2014 , , .		25
56	Solving peg-in-hole tasks by human demonstration and exception strategies. Industrial Robot, 2014, 41, 575-584.	2.1	52
57	Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design. Lecture Notes in Computer Science, 2014, , 450-461.	1.3	6
58	Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 1847-1871.	13.9	285
59	A Simple Ontology of Manipulation Actions Based on Hand-Object Relations. IEEE Transactions on Autonomous Mental Development, 2013, 5, 117-134.	1.6	53
60	A Survey of the Ontogeny of Tool Use: From Sensorimotor Experience to Planning. IEEE Transactions on Autonomous Mental Development, 2013, 5, 18-45.	1.6	56
61	Pose estimation using local structure-specific shape and appearance context., 2013,,.		56
62	Multi-view object recognition using view-point invariant shape relations and appearance information. , $2013, \dots$		18
63	Learning spatial relations between objects from 3D scenes. , 2013, , .		1
64	Extended 3D Line Segments from RGB-D Data for Pose Estimation. Lecture Notes in Computer Science, 2013, , 54-65.	1.3	4
65	Supervised Object Class Colour Normalisation. Lecture Notes in Computer Science, 2013, , 611-619.	1.3	0
66	Enabling grasping of unknown objects through a synergistic use of edge and surface information. International Journal of Robotics Research, 2012, 31, 1190-1213.	8.5	24
67	Learning Object Relationships which determine the Outcome of Actions. Paladyn, 2012, 3, .	2.7	6
68	VisGraB: A Benchmark for Vision-Based Grasping. Paladyn, 2012, 3, .	2.7	18
69	Disparity disambiguation by fusion of signal- and symbolic-level information. Machine Vision and Applications, 2012, 23, 65-77.	2.7	5
70	Ring on the hook: placing a ring on a moving and pendulating hook based on visual input. Industrial Robot, 2011, 38, 301-314.	2.1	3
71	Object–Action Complexes: Grounded abstractions of sensory–motor processes. Robotics and Autonomous Systems, 2011, 59, 740-757.	5.1	127
72	Performance of Correspondence Algorithms in Vision-Based Driver Assistance Using an Online Image Sequence Database. IEEE Transactions on Vehicular Technology, 2011, 60, 2012-2026.	6.3	40

#	Article	lF	Citations
73	Temporal accumulation of oriented visual features. Journal of Visual Communication and Image Representation, 2011, 22, 153-163.	2.8	3
74	The Driving School System: Learning Basic Driving Skills From a Teacher in a Real Car. IEEE Transactions on Intelligent Transportation Systems, 2011, 12, 1135-1146.	8.0	12
75	What a successful grasp tells about the success chances of grasps in its vicinity. , 2011, , .		1
76	Learning visual representations for perception-action systems. International Journal of Robotics Research, 2011, 30, 294-307.	8.5	22
77	Learning Visual Representations for Interactive Systems. Springer Tracts in Advanced Robotics, 2011, , 399-416.	0.4	12
78	Accumulation of Different Visual Feature Descriptors in a Coherent Framework. Lecture Notes in Computer Science, 2011, , 79-90.	1.3	2
79	An Outline for an Intelligent System Performing Peg-in-Hole Actions with Flexible Objects. Lecture Notes in Computer Science, 2011, , 430-441.	1.3	3
80	A compact harmonic code for early vision based on anisotropic frequency channels. Computer Vision and Image Understanding, 2010, 114, 681-699.	4.7	29
81	Using multi-modal 3D contours and their relations for vision and robotics. Journal of Visual Communication and Image Representation, 2010, 21, 850-864.	2.8	8
82	A two-level real-time vision machine combining coarse- and fine-grained parallelism. Journal of Real-Time Image Processing, 2010, 5, 291-304.	3.5	14
83	Development of Object and Grasping Knowledge by Robot Exploration. IEEE Transactions on Autonomous Mental Development, 2010, 2, 368-383.	1.6	27
84	A strategy for grasping unknown objects based on co-planarity and colour information. Robotics and Autonomous Systems, 2010, 58, 551-565.	5.1	77
85	A cortical architecture on parallel hardware for motion processing in real time. Journal of Vision, 2010, 10, 18-18.	0.3	23
86	Refining grasp affordance models by experience. , 2010, , .		23
87	VISUAL PRIMITIVES: LOCAL, CONDENSED, SEMANTICALLY RICH VISUAL DESCRIPTORS AND THEIR APPLICATIONS IN ROBOTICS. International Journal of Humanoid Robotics, 2010, 07, 379-405.	1.1	27
88	Disambiguating Multi–Modal Scene Representations Using Perceptual Grouping Constraints. PLoS ONE, 2010, 5, e10663.	2.5	5
89	Continuous dimensionality characterization of image structures. Image and Vision Computing, 2009, 27, 628-636.	4.5	39
90	Using 3D contours and their relations for cognitive vision and robotics. , 2009, , .		1

#	Article	IF	CITATIONS
91	Learning to grasp unknown objects based on 3D edge information. , 2009, , .		10
92	Tactile object exploration using cursor navigation sensors., 2009,,.		5
93	Learning Objects and Grasp Affordances through Autonomous Exploration. Lecture Notes in Computer Science, 2009, , 235-244.	1.3	12
94	Comparison of Point and Line Features and Their Combination for Rigid Body Motion Estimation. Lecture Notes in Computer Science, 2009, , 280-304.	1.3	7
95	Spatial-Temporal Junction Extraction and Semantic Interpretation. Lecture Notes in Computer Science, 2009, , 275-286.	1.3	1
96	A Real-Time Embedded System for Stereo Vision Preprocessing Using an FPGA., 2008, , .		11
97	BIRTH OF THE OBJECT: DETECTION OF OBJECTNESS AND EXTRACTION OF OBJECT SHAPE THROUGH OBJECT–ACTION COMPLEXES. International Journal of Humanoid Robotics, 2008, 05, 247-265.	1.1	59
98	A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors. , 2008, , .		4
99	Semantic Reasoning for Scene Interpretation. Lecture Notes in Computer Science, 2008, , 121-134.	1.3	0
100	A Scene Representation Based on Multi-Modal 2D and 3D Features. , 2007, , .		6
101	Editorial: ECOVISION: Challenges in Early-Cognitive Vision. International Journal of Computer Vision, 2007, 72, 5-7.	15.6	1
102	Early Reactive Grasping with Second Order 3D Feature Relations. Lecture Notes in Control and Information Sciences, 2007, , 91-105.	1.0	14
103	Utilizing Semantic Interpretation of Junctions for 3D-2D Pose Estimation., 2007,, 692-701.		1
104	Symbols as Self-emergent Entities in an Optimization Process of Feature Extraction and Predictions. Biological Cybernetics, 2006, 94, 325-334.	1.3	67
105	Symbolic Pointillism: Computer Art Motivated by Human Brain Structures. Leonardo, 2005, 38, 337-340.	0.3	4
106	Coding of visual information in the brain. Network: Computation in Neural Systems, 2005, 16, 321-322.	3.6	0
107	Multi-modal Primitives as Functional Models of Hyper-columns and Their Use for Contextual Integration. Lecture Notes in Computer Science, 2005, , 157-166.	1.3	10
108	Three Dilemmas of Signal- and Symbol-Based Representations in Computer Vision. Lecture Notes in Computer Science, 2005, , 167-176.	1.3	4

#	Article	IF	CITATIONS
109	Early Cognitive Vision: Using Gestalt-Laws for Task-Dependent, Active Image-Processing. Natural Computing, 2004, 3, 293-321.	3.0	17
110	An explicit and compact coding of geometric and structural image information applied to stereo processing. Pattern Recognition Letters, 2004, 25, 849-863.	4.2	18
111	Statistical and Deterministic Regularities: Utilization of Motion and Grouping in Biological and Artificial Visual Systems. Advances in Imaging and Electron Physics, 2004, 131, 81-146.	0.2	7
112	A Probabilistic Definition of Intrinsic Dimensionality for Images. Lecture Notes in Computer Science, 2003, , 140-147.	1.3	9
113	Multi-modal estimation of collinearity and parallelism in natural image sequences. Network: Computation in Neural Systems, 2002, 13, 553-576.	3.6	6
114	Accumulation of object representations utilising interaction of robot action and perception. Knowledge-Based Systems, 2002, 15, 111-118.	7.1	15
115	Extraction of Object Representations from Stereo Image Sequences Utilizing Statistical and Deterministic Regularities in Visual Data. Lecture Notes in Computer Science, 2002, , 322-330.	1.3	4
116	Multi-modal estimation of collinearity and parallelism in natural image sequences*. Network: Computation in Neural Systems, 2002, 13, 553-576.	3.6	17
117	Multi-modal estimation of collinearity and parallelism in natural image sequences. Network: Computation in Neural Systems, 2002, 13, 553-76.	3.6	1
118	Learning Object Representations Using A Priori Constraints Within ORASSYLL. Neural Computation, 2001, 13, 389-410.	2.2	12
119	Tracking with a Novel Pose Estimation Algorithm. Lecture Notes in Computer Science, 2001, , 9-18.	1.3	7
120	ORASSYLL: Object Recognition with Autonomously Learned and Sparse Symbolic Representations Based on Metrically Organized Local Line Detectors. Computer Vision and Image Understanding, 2000, 77, 48-77.	4.7	5
121	Object Recognition with Representations Based on Sparsified Gabor Wavelets Used as Local Line Detectors. Lecture Notes in Computer Science, 1999, , 225-233.	1.3	0
122	Title is missing!. Neural Processing Letters, 1998, 8, 117-129.	3.2	62
123	Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19, 775-779.	13.9	2,408
124	Improving object recognition by transforming Gabor filter responses. Network: Computation in Neural Systems, 1996, 7, 341-347.	3.6	28