Manuel Blouin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4276775/publications.pdf

Version: 2024-02-01

60 papers 4,402 citations

218677
26
h-index

59 g-index

74 all docs

74 docs citations

74 times ranked 5025 citing authors

#	Article	IF	CITATIONS
1	Controlled natural selection of soil microbiome through plant-soil feedback confers resistance to a foliar pathogen. Plant and Soil, 2023, 485, 181-195.	3.7	4
2	Artificial selection of stable rhizosphere microbiota leads to heritable plant phenotype changes. Ecology Letters, 2022, 25, 189-201.	6.4	20
3	Bulk and rhizosphere soil properties under two Coffea species influenced by the earthworm Pontoscolex corethrurus. Rhizosphere, 2022, 21, 100458.	3.0	6
4	A Standardized Morpho-Functional Classification of the Planet's Humipedons. Soil Systems, 2022, 6, 59.	2.6	7
5	Community diversity determines the evolution of synthetic bacterial communities under artificial selection. Evolution; International Journal of Organic Evolution, 2022, 76, 1883-1895.	2.3	5
6	Comment on "Global distribution of earthworm diversity― Science, 2021, 371, .	12.6	10
7	The Epistemic Revolution Induced by Microbiome Studies: An Interdisciplinary View. Biology, 2021, 10, 651.	2.8	18
8	Soil microbes drive the effect of plant species and genotypic diversity interaction on productivity Plant and Soil, 2021, 467, 165.	3.7	7
9	Spatial analysis of the root system coupled to microbial community inoculation shed light on rhizosphere bacterial community assembly. Biology and Fertility of Soils, 2021, 57, 973-989.	4.3	12
10	Splitâ€root system optimization based on the survival, growth and development of the model Poaceae Brachypodium distachyon. Physiologia Plantarum, 2020, 168, 227-236.	5.2	7
11	Sampling the control bulk soil for rhizosphere and drilosphere microbial studies. Geoderma, 2020, 380, 114674.	5.1	10
12	A core microbiota of the plant-earthworm interaction conserved across soils. Soil Biology and Biochemistry, 2020, 144, 107754.	8.8	34
13	Tree growth and macrofauna colonization in Technosols constructed from recycled urban wastes. Ecological Engineering, 2020, 153, 105886.	3 . 6	13
14	Using constructed soils for green infrastructure – challenges and limitations. Soil, 2020, 6, 413-434.	4.9	36
15	Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development, 2019, 39, 1.	5. 3	92
16	Earthworms Building Up Soil Microbiota, a Review. Frontiers in Environmental Science, 2019, 7, .	3.3	172
17	Effect of the Reproduction Method in an Artificial Selection Experiment at the Community Level. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	26
18	Plant-earthworm interactions: influence of age and proportion of casts in the soil on plant growth, morphology and nitrogen uptake. Plant and Soil, 2018, 424, 49-61.	3.7	17

#	Article	IF	CITATIONS
19	Genotypic variability enhances the reproducibility of an ecological study. Nature Ecology and Evolution, 2018, 2, 279-287.	7.8	41
20	Earthworm effect on root morphology in a split root system. Plant Biosystems, 2018, 152, 780-786.	1.6	7
21	Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology, 2018, 122, 271-296.	4.3	15
22	Humusica 1, article 1: Essential bases – Vocabulary. Applied Soil Ecology, 2018, 122, 10-21.	4.3	16
23	Chemical communication: An evidence for co-evolution between plants and soil organisms. Applied Soil Ecology, 2018, 123, 409-415.	4.3	30
24	Ecology for Sustainable and Multifunctional Agriculture. Sustainable Agriculture Reviews, 2018, , $1\text{-}46$.	1.1	8
25	Initial conditions during Technosol implementation shape earthworms and ants diversity. Landscape and Urban Planning, 2017, 159, 32-41.	7.5	34
26	Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecological Engineering, 2017, 99, 486-495.	3.6	44
27	Let the Core Microbiota Be Functional. Trends in Plant Science, 2017, 22, 583-595.	8.8	317
28	Interactive effects of compost, plants and earthworms on the aggregations of constructed Technosols. Geoderma, 2017, 305, 305-313.	5.1	25
29	Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties. Soil, 2016, 2, 163-174.	4.9	20
30	Ecosystem Engineers in a Self-organized Soil. Soil Science, 2016, 181, 91-109.	0.9	145
31	Influence of Organic Matter Content on Hydro-Structural Properties of Constructed Technosols. Pedosphere, 2016, 26, 486-498.	4.0	23
32	Transcriptional profiling of wheat in response to take-all disease and mechanisms involved in earthworm's biocontrol effect. European Journal of Plant Pathology, 2016, 144, 155-165.	1.7	10
33	Levels and limits in artificial selection of communities. Ecology Letters, 2015, 18, 1040-1048.	6.4	53
34	Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 2015, 35, 553-567.	5.3	215
35	Biocontrol of eyespot disease on two winter wheat cultivars by an anecic earthworm (Lumbricus) Tj ETQq $1\ 1\ 0$.	784314 rg 4.3	BT Qverlock 17
36	Environmental microbiology as a mosaic of explored ecosystems and issues. Environmental Science and Pollution Research, 2015, 22, 13577-13598.	5.3	10

#	Article	IF	CITATIONS
37	A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 2015, 114, 104-116.	4.2	63
38	Combined effects of earthworms and IAA-producing rhizobacteria on plant growth and development. Applied Soil Ecology, 2014, 80, 100-107.	4.3	20
39	Near infrared spectroscopy (NIRS) to estimate earthworm cast age. Soil Biology and Biochemistry, 2014, 70, 47-53.	8.8	22
40	Balkanized Research in Ecological Engineering Revealed by a Bibliometric Analysis of Earthworms and Ecosystem Services. Environmental Management, 2013, 52, 309-320.	2.7	18
41	A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 2013, 64, 161-182.	3.9	800
42	Plant homeostasis, growth and development in natural and artificial soils. Ecological Complexity, 2012, 9, 10-15.	2.9	13
43	Plant Preference for Ammonium versus Nitrate: A Neglected Determinant of Ecosystem Functioning?. American Naturalist, 2012, 180, 60-69.	2.1	155
44	Control of Cultivable IAA-Producing Bacteria by the Plant <i>Arabidopsis thaliana</i> Aporrectodea caliginosa Applied and Environmental Soil Science, 2012, 2012, 1-4.	1.7	15
45	Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Science of the Total Environment, 2012, 416, 200-207.	8.0	56
46	Signal Molecules Mediate the Impact of the Earthworm Aporrectodea caliginosa on Growth, Development and Defence of the Plant Arabidopsis thaliana. PLoS ONE, 2012, 7, e49504.	2.5	54
47	Combined effects of contrast between poor and rich patches and overall nitrate concentration on Arabidopsis thaliana root system structure. Functional Plant Biology, 2011, 38, 364.	2.1	12
48	Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant and Soil, 2010, 328, 109-118.	3.7	67
49	Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biology and Biochemistry, 2010, 42, 203-209.	8.8	75
50	Earthworms influence the production of above- and belowground biomass and the expression of genes involved in cell proliferation and stress responses in Arabidopsis thaliana. Soil Biology and Biochemistry, 2010, 42, 244-252.	8.8	40
51	Effects of an endogeic and an anecic earthworm on the competition between four annual plants and their relative fecundity. Soil Biology and Biochemistry, 2009, 41, 1668-1673.	8.8	51
52	5 Earthworms as key actors in self-organized soil systems. Theoretical Ecology Series, 2007, , 77-I.	0.2	24
53	A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System. PLoS ONE, 2007, 2, e1248.	2.5	40
54	Drought stress in rice (Oryza sativa L.) is enhanced in the presence of the compacting earthworm Millsonia anomala. Environmental and Experimental Botany, 2007, 60, 352-359.	4.2	45

#	Article	IF	CITATIONS
55	A quick method to determine root biomass distribution in diameter classes. Plant and Soil, 2007, 290, 371-381.	3.7	38
56	Soil invertebrates andÂecosystem services. European Journal of Soil Biology, 2006, 42, S3-S15.	3.2	1,050
57	Earthworms (Millsonia anomala, Megascolecidae) do not increase rice growth through enhanced nitrogen mineralization. Soil Biology and Biochemistry, 2006, 38, 2063-2068.	8.8	56
58	Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecology Letters, 2005, 8, 202-208.	6.4	123
59	Plant parasite control and soil fauna diversity. Comptes Rendus - Biologies, 2004, 327, 629-638.	0.2	23
60	Wheat Rhizosphere Microbiota Respond to Changes in Plant Genotype, Chemical Inputs, and Plant Phenotypic Plasticity. Frontiers in Ecology and Evolution, $0,10,10$	2.2	7