
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4274057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 2014, 30, 884-886.	4.1	1,090
2	Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nature Biotechnology, 2009, 27, 378-386.	17.5	519
3	A Mass Spectrometric-Derived Cell Surface Protein Atlas. PLoS ONE, 2015, 10, e0121314.	2.5	356
4	Targeted proteomic strategy for clinical biomarker discovery. Molecular Oncology, 2009, 3, 33-44.	4.6	321
5	A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature, 2013, 494, 266-270.	27.8	307
6	Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nature Methods, 2005, 2, 591-598.	19.0	302
7	Abnormal Development and Function of B Lymphocytes in Mice Deficient for the Signaling Adaptor Protein SLP-65. Immunity, 1999, 11, 547-554.	14.3	296
8	On the Development of Plasma Protein Biomarkers. Journal of Proteome Research, 2011, 10, 5-16.	3.7	289
9	Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biology, 2004, 6, R9.	9.6	252
10	SLP-65: A New Signaling Component in B Lymphocytes which Requires Expression of the Antigen Receptor for Phosphorylation. Journal of Experimental Medicine, 1998, 188, 791-795.	8.5	250
11	The in silico human surfaceome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10988-E10997.	7.1	250
12	Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature, 2019, 576, 452-458.	27.8	231
13	Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor–mediated lipid raft dynamics. Nature Immunology, 2006, 7, 625-633.	14.5	189
14	Glycoproteomic Analysis of Prostate Cancer Tissues by SWATH Mass Spectrometry Discovers N-acylethanolamine Acid Amidase and Protein Tyrosine Kinase 7 as Signatures for Tumor Aggressiveness. Molecular and Cellular Proteomics, 2014, 13, 1753-1768.	3.8	165
15	Mass Spectrometric Detection of Tissue Proteins in Plasma. Molecular and Cellular Proteomics, 2007, 6, 64-71.	3.8	156
16	Two-dimensional Blue Native/SDS Gel Electrophoresis of Multi-Protein Complexes from Whole Cellular Lysates. Molecular and Cellular Proteomics, 2004, 3, 176-182.	3.8	155
17	Direct identification of ligand-receptor interactions on living cells and tissues. Nature Biotechnology, 2012, 30, 997-1001.	17.5	154
18	Association of SLP-65 / BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. European Journal of Immunology, 2001, 31, 2126-2134.	2.9	126

#	Article	IF	CITATIONS
19	Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) for the Identification and Analysis of Multiprotein Complexes. Science Signaling, 2006, 2006, pl4-pl4.	3.6	115
20	An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Research, 2017, 27, 2083-2095.	5.5	112
21	Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in <i>Escherichia coli</i> . Science Advances, 2018, 4, eaau2634.	10.3	109
22	Quantitative proteomics identifies a Dab2/integrin module regulating cell migration. Journal of Cell Biology, 2009, 186, 99-111.	5.2	106
23	Carbonic anhydrase XII is a new therapeutic target to overcome chemoresistance in cancer cells. Oncotarget, 2015, 6, 6776-6793.	1.8	102
24	UniPepa database for human N-linked glycosites: a resource for biomarker discovery. Genome Biology, 2006, 7, R73.	9.6	101
25	Neuronal Nogo-A Modulates Growth Cone Motility via Rho-GTP/LIMK1/Cofilin in the Unlesioned Adult Nervous System. Journal of Biological Chemistry, 2009, 284, 10793-10807.	3.4	96
26	SH3P7 Is a Cytoskeleton Adapter Protein and Is Coupled to Signal Transduction from Lymphocyte Antigen Receptors. Molecular and Cellular Biology, 1999, 19, 1539-1546.	2.3	84
27	Analysis of Cell Surface Proteome Changes via Label-free, Quantitative Mass Spectrometry. Molecular and Cellular Proteomics, 2009, 8, 624-638.	3.8	84
28	Vaccinia Virus Entry Is Followed by Core Activation and Proteasome-Mediated Release of the Immunomodulatory Effector VH1 from Lateral Bodies. Cell Reports, 2013, 4, 464-476.	6.4	79
29	Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InIB-mediated invasion. PLoS Pathogens, 2019, 15, e1008032.	4.7	78
30	Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood, 2010, 116, e26-e34.	1.4	76
31	CD24 tracks divergent pluripotent states in mouse and human cells. Nature Communications, 2015, 6, 7329.	12.8	76
32	A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets. Stem Cell Reports, 2014, 3, 185-203.	4.8	73
33	Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in Brain Cell Populations. International Journal of Molecular Sciences, 2020, 21, 7944.	4.1	72
34	The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell, 2021, 39, 288-293.	16.8	71
35	The Mouse C2C12 Myoblast Cell Surface N-Linked Glycoproteome. Molecular and Cellular Proteomics, 2009, 8, 2555-2569.	3.8	68
36	A Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2018, 13, 666-675.	3.4	68

BERND WOLLSCHEID

#	Article	IF	CITATIONS
37	MassIVE.quant: a community resource of quantitative mass spectrometry–based proteomics datasets. Nature Methods, 2020, 17, 981-984.	19.0	66
38	MicroRNA-96 Directly Inhibits Î ³ -Globin Expression in Human Erythropoiesis. PLoS ONE, 2011, 6, e22838.	2.5	65
39	Leukemia surfaceome analysis reveals new disease-associated features. Blood, 2013, 121, e149-e159.	1.4	63
40	Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight, 2020, 5, .	5.0	62
41	Dynamin 2 mutations in Charcot–Marie–Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain, 2012, 135, 1395-1411.	7.6	60
42	Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways. Scientific Reports, 2016, 6, 30030.	3.3	60
43	CD20 as a gatekeeper of the resting state of human B cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
44	A Cell Surfaceome Map for Immunophenotyping and Sorting Pluripotent Stem Cells. Molecular and Cellular Proteomics, 2012, 11, 303-316.	3.8	58
45	Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring. Clinical Proteomics, 2013, 10, 16.	2.1	58
46	Combine and Conquer: Surfactants, Solvents, and Chaotropes for Robust Mass Spectrometry Based Analyses of Membrane Proteins. Analytical Chemistry, 2014, 86, 1551-1559.	6.5	57
47	Diagnostics and correction of batch effects in largeâ€scale proteomic studies: a tutorial. Molecular Systems Biology, 2021, 17, e10240.	7.2	57
48	Ligand-based receptor identification on living cells and tissues using TRICEPS. Nature Protocols, 2013, 8, 1321-1336.	12.0	55
49	The Hemolymph Proteome of Fed and Starved Drosophila Larvae. PLoS ONE, 2013, 8, e67208.	2.5	55
50	HATRIC-based identification of receptors for orphan ligands. Nature Communications, 2018, 9, 1519.	12.8	55
51	Adverse Outcome Pathway-Driven Analysis of Liver Steatosis <i>in Vitro</i> : A Case Study with Cyproconazole. Chemical Research in Toxicology, 2018, 31, 784-798.	3.3	49
52	Standardization and harmonization of distributed multi-center proteotype analysis supporting precision medicine studies. Nature Communications, 2020, 11, 5248.	12.8	49
53	N-Glycoprotein SRMAtlas. Molecular and Cellular Proteomics, 2013, 12, 1005-1016.	3.8	48
54	Identification and Functional Characterization of pVHL-Dependent Cell Surface Proteins in Renal Cell Carcinoma. Neoplasia, 2012, 14, 535-IN17.	5.3	44

#	Article	IF	CITATIONS
55	Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data. Journal of Proteomics, 2014, 108, 269-283.	2.4	43
56	An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food and Chemical Toxicology, 2020, 139, 111283.	3.6	43
57	Teneurin protein family: An emerging role in human tumorigenesis and drug resistance. Cancer Letters, 2012, 326, 1-7.	7.2	38
58	A novel role for proteomics in the discovery of cellâ€surface markers on stem cells: Scratching the surface. Proteomics - Clinical Applications, 2008, 2, 892-903.	1.6	37
59	Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget, 2014, 5, 11501-11512.	1.8	37
60	The Stalk Domain and the Glycosylation Status of the Activating Natural Killer Cell Receptor NKp30 Are Important for Ligand Binding. Journal of Biological Chemistry, 2012, 287, 31527-31539.	3.4	33
61	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	12.8	33
62	Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Frontiers in Microbiology, 2014, 5, 392.	3.5	32
63	FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports, 2018, 10, 87-100.	4.8	32
64	Surfaceome nanoscale organization and extracellular interaction networks. Current Opinion in Chemical Biology, 2019, 48, 26-33.	6.1	32
65	PCprophet: a framework for protein complex prediction and differential analysis using proteomic data. Nature Methods, 2021, 18, 520-527.	19.0	32
66	Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells. Experimental Hematology, 2015, 43, 382-392.	0.4	31
67	Classification of mouse B cell types using surfaceome proteotype maps. Nature Communications, 2019, 10, 5734.	12.8	31
68	Proteomics approaches for the analysis of enriched microbial subpopulations and visualization of complex functional information. Current Opinion in Biotechnology, 2013, 24, 112-119.	6.6	30
69	Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2Âdependent signaling. Molecular Metabolism, 2016, 5, 937-947.	6.5	29
70	Comprehensive Description of the N-Glycoproteome of Mouse Pancreatic β-Cells and Human Islets. Journal of Proteome Research, 2012, 11, 1598-1608.	3.7	28
71	Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity. Nature Communications, 2020, 11, 4990.	12.8	27
72	Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12774-12779.	7.1	26

#	Article	IF	CITATIONS
73	Proteomic surfaceome analysis of mesothelioma. Lung Cancer, 2012, 75, 189-196.	2.0	24
74	Cell Surface Capturing Technologies for the Surfaceome Discovery of Hepatocytes. Methods in Molecular Biology, 2012, 909, 1-16.	0.9	24
75	A peptide resource for the analysis of Staphylococcus aureus in host-pathogen interaction studies. Proteomics, 2015, 15, 3648-3661.	2.2	24
76	Integrin-Mediated Signaling Induced by Simian Virus 40 Leads to Transient Uncoupling of Cortical Actin and the Plasma Membrane. PLoS ONE, 2013, 8, e55799.	2.5	22
77	Surfaceome Profiling Reveals Regulators of Neural Stem Cell Function. Stem Cells, 2014, 32, 258-268.	3.2	22
78	Sulforaphane Preconditioning Sensitizes Human Colon Cancer Cells towards the Bioreductive Anticancer Prodrug PR-104A. PLoS ONE, 2016, 11, e0150219.	2.5	22
79	Alterations in <i>BAP1</i> Are Associated with Cisplatin Resistance through Inhibition of Apoptosis in Malignant Pleural Mesothelioma. Clinical Cancer Research, 2021, 27, 2277-2291.	7.0	21
80	Proteomic Analysis Reveals Drug Accessible Cell Surface N-Glycoproteins of Primary and Established Glioblastoma Cell Lines. Journal of Proteome Research, 2012, 11, 4885-4893.	3.7	20
81	Malfunctioning of adipocytes in obesity is linked to quantitative surfaceome changes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1208-1216.	2.4	20
82	Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. Journal of Neuroinflammation, 2018, 15, 7.	7.2	20
83	Surfaceome of classical Hodgkin and nonâ€Hodgkin lymphoma. Proteomics - Clinical Applications, 2015, 9, 661-670.	1.6	19
84	Lipid Raft Proteins and Their Identification in T Lymphocytes. Sub-Cellular Biochemistry, 2004, 37, 121-152.	2.4	19
85	RIP-chip-SRM—a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in <i>C. elegans</i> . Genome Research, 2012, 22, 1360-1371.	5.5	18
86	Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen. Nature Communications, 2021, 12, 1693.	12.8	17
87	Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion. Journal of Biological Chemistry, 2015, 290, 25891-25906.	3.4	16
88	Leukocyte Differentiation by Histidine-Rich Glycoprotein/Stanniocalcin-2 Complex Regulates Murine Glioma Growth through Modulation of Antitumor Immunity. Molecular Cancer Therapeutics, 2018, 17, 1961-1972.	4.1	16
89	The Adaptor Protein SLP-65/BLNK Controls the Calcium Response in Activated B Cells. Current Topics in Microbiology and Immunology, 1999, 246, 283-289.	1.1	16
90	Antibiotic Discovery with Synthetic Fermentation: Library Assembly, Phenotypic Screening, and Mechanism of Action of β-Peptides Targeting Penicillin-Binding Proteins. ACS Chemical Biology, 2019, 14, 1030-1040.	3.4	14

#	Article	IF	CITATIONS
91	CD proteome and beyond - technologies for targeting the immune cell surfaceome. Frontiers in Bioscience - Landmark, 2012, 17, 1599.	3.0	14
92	Proteomics/genomics and signaling in lymphocytes. Current Opinion in Immunology, 2004, 16, 337-344.	5.5	13
93	Reproducible Determination of High-Density Lipoprotein Proteotypes. Journal of Proteome Research, 2021, 20, 4974-4984.	3.7	13
94	Detection of protein complex interactions via a Blue Native-PAGE retardation assay. Analytical Biochemistry, 2009, 392, 177-179.	2.4	11
95	CSC Technology: Selective Labeling of Glycoproteins by Mild Oxidation to Phenotype Cells. Methods in Molecular Biology, 2013, 951, 33-43.	0.9	11
96	Listeriolysin O-dependent host surfaceome remodeling modulatesListeria monocytogenesinvasion. Pathogens and Disease, 2018, 76, .	2.0	11
97	Transcriptomic Responses of Cancerous and Noncancerous Human Colon Cells to Sulforaphane and Selenium. Chemical Research in Toxicology, 2014, 27, 377-386.	3.3	10
98	Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence. Nature Microbiology, 2018, 3, 588-599.	13.3	10
99	Cellâ€Derived Vesicles as TRPC1 Channel Delivery Systems for the Recovery of Cellular Respiratory and Proliferative Capacities. Advanced Biology, 2020, 4, e2000146.	3.0	10
100	A Proteogenomic Resource Enabling Integrated Analysis of <i>Listeria</i> Genotype–Proteotype–Phenotype Relationships. Journal of Proteome Research, 2020, 19, 1647-1662.	3.7	10
101	Neuroproteomics and the Detection of Regulatory Phosphosites. Current Proteomics, 2007, 4, 209-222.	0.3	8
102	Poxviruses package viral redox proteins in lateral bodies and modulate the host oxidative response. PLoS Pathogens, 2022, 18, e1010614.	4.7	8
103	ESRRG and PERM1 Govern Mitochondrial Conversion in Brite/Beige Adipocyte Formation. Frontiers in Endocrinology, 2020, 11, 387.	3.5	7
104	Focus on Stem Cell Proteomics. Proteomics, 2011, 11, 3943-3945.	2.2	5
105	<i>In vitro</i> quantification of botulinum neurotoxin type A1 using immobilized nerve cell-mimicking nanoreactors in a microfluidic platform. Analyst, The, 2019, 144, 5755-5765.	3.5	5
106	The hematopoietic stem cell marker VNN2 is associated with chemoresistance in pediatric B-cell precursor ALL. Blood Advances, 2020, 4, 4052-4064.	5.2	5
107	Characterization of the B cell-specific adaptor SLP-65 and other protein tyrosine kinase substrates by two-dimensional gel electrophoresis. Immunology Letters, 1999, 68, 95-99.	2.5	4
108	Elucidation of host-virus surfaceome interactions using spatial proteotyping. Advances in Virus Research, 2021, 109, 105-134.	2.1	4

BERND WOLLSCHEID

#	Article	IF	CITATIONS
109	Identification of New Interacting Partners for Atypical Rho GTPases: A SILAC-Based Approach. Methods in Molecular Biology, 2012, 827, 305-317.	0.9	3
110	Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer. Clinical Proteomics, 2022, 19, 9.	2.1	3
111	Immunophenotyping without antibodies. Der Pathologe, 2008, 29, 314-316.	1.6	2
112	Proteomic Exploration of the Cell Surface Landscape Reveals New Leukemia Associated Features Blood, 2012, 120, 2506-2506.	1.4	0
113	Computational Data Integration in Toxicogenomics. Methods in Pharmacology and Toxicology, 2015, , 371-392.	0.2	0