Adrien Rusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273477/publications.pdf

Version: 2024-02-01

		201674	144013
59	4,154	27	57
papers	citations	h-index	g-index
C 4	C 4	C 4	2566
64	64	64	3566
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Using crop diversity to lower pesticide use: Socio-ecological approaches. Science of the Total Environment, 2022, 804, 150156.	8.0	32
2	Field and Landscape Risk Factors Impacting Flavescence Dorée Infection: Insights from Spatial Bayesian Modeling in the Bordeaux Vineyards. Phytopathology, 2022, 112, 1686-1697.	2.2	4
3	Pesticide use in vineyards is affected by semi-natural habitats and organic farming share in the landscape. Agriculture, Ecosystems and Environment, 2022, 333, 107967.	5.3	9
4	Urbanization hampers biological control of insect pests: A global meta-analysis. Science of the Total Environment, 2022, 834, 155396.	8.0	15
5	Winegrowers' decision-making: A pan-European perspective on pesticide use and inter-row management. Journal of Rural Studies, 2022, 94, 37-53.	4.7	9
6	Pest control services provided by bats in vineyard landscapes. Agriculture, Ecosystems and Environment, 2021, 306, 107207.	5.3	23
7	Proportion of Grassland at Landscape Scale Drives Natural Pest Control Services in Agricultural Landscapes. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
8	Organic management and landscape heterogeneity combine to sustain multifunctional bird communities in European vineyards. Journal of Applied Ecology, 2021, 58, 1261-1271.	4.0	17
9	Multi-community effects of organic and conventional farming practices in vineyards. Scientific Reports, 2021, 11, 11979.	3.3	22
10	Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecological Solutions and Evidence, 2021, 2, e12086.	2.0	29
11	The shape of the predator biomass distribution affects biological pest control services in agricultural landscapes. Functional Ecology, 2021, 35, 193-204.	3.6	18
12	Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects. Advances in Ecological Research, 2021, 65, 133-165.	2.7	11
13	Harnessing biodiversity and ecosystem services to safeguard multifunctional vineyard landscapes in a global change context. Advances in Ecological Research, 2021, 65, 305-335.	2.7	6
14	Increasing amount and quality of green infrastructures at different scales promotes biological control in agricultural landscapes. Agriculture, Ecosystems and Environment, 2020, 290, 106735.	5.3	20
15	Crop diversity benefits carabid and pollinator communities in landscapes with semiâ€natural habitats. Journal of Applied Ecology, 2020, 57, 2170-2179.	4.0	83
16	Seasonal variation of Drosophilidae communities in viticultural landscapes. Basic and Applied Ecology, 2020, 48, 83-91.	2.7	6
17	Landscape-scale expansion of agroecology to enhance natural pest control: A systematic review. Advances in Ecological Research, 2020, , 1-48.	2.7	28
18	Temporal variation of the effects of landscape composition onÂlacewings (Chrysopidae: Neuroptera) in vineyards. Agricultural and Forest Entomology, 2020, 22, 274-283.	1.3	14

#	Article	IF	Citations
19	Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis. Journal of Pest Science, 2020, 93, 1255-1265.	3.7	27
20	Predation of grape berry moths by harvestmen depends on landscape composition. Biological Control, 2020, 150, 104358.	3.0	12
21	Temporal dynamics of Drosophila suzukii in vineyard landscapes. Entomologia Generalis, 2020, 40, 285-295.	3.1	8
22	Highly diversified crop systems can promote the dispersal and foraging activity of the generalist predator Harmonia axyridis. Entomologia Generalis, 2020, 40, 133-145.	3.1	20
23	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
24	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
25	Organic farming expansion drives natural enemy abundance but not diversity in vineyardâ€dominated landscapes. Ecology and Evolution, 2019, 9, 13532-13542.	1.9	30
26	Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecological Applications, 2019, 29, e01818.	3.8	30
27	Chapitre 7. Paysages, bioagresseurs, ennemis naturels et niveaux de r $ ilde{A}$ ©gulation biologique. , 2019, , 111-130.		0
28	Biological protection against grape berry moths. A review. Agronomy for Sustainable Development, 2018, 38, 1.	5. 3	53
29	A framework to identify indicator species for ecosystem services in agricultural landscapes. Ecological Indicators, 2018, 91, 278-286.	6.3	21
30	Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biological Conservation, 2018, 218, 247-253.	4.1	68
31	Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. Journal of Applied Ecology, 2018, 55, 1516-1525.	4.0	38
32	Ecology for Sustainable and Multifunctional Agriculture. Sustainable Agriculture Reviews, 2018, , $1\text{-}46$.	1.1	8
33	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
34	Evidence that organic farming promotes pest control. Nature Sustainability, 2018, 1, 361-368.	23.7	117
35	Grape moth density in Bordeaux vineyards depends on local habitat management despite effects of landscape heterogeneity on their biological control. Journal of Applied Ecology, 2017, 54, 1794-1803.	4.0	37
36	Conservation Biological Control in Agricultural Landscapes. Advances in Botanical Research, 2017, 81, 333-360.	1,1	31

#	Article	IF	Citations
37	Conserving speciesâ€rich predator assemblages strengthens natural pest control in a climate warming context. Agricultural and Forest Entomology, 2017, 19, 52-59.	1.3	21
38	Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. Journal of Applied Ecology, 2017, 54, 500-508.	4.0	61
39	Pollen beetle mortality is increased by ground-dwelling generalist predators but not landscape complexity. Agriculture, Ecosystems and Environment, 2017, 250, 133-142.	5.3	15
40	Interactive effects of pests increase seed yield. Ecology and Evolution, 2016, 6, 2149-2157.	1.9	32
41	Local and landscape effects of agricultural intensification on Carabid community structure and weed seed predation in a perennial cropping system. Landscape Ecology, 2016, 31, 2163-2174.	4.2	37
42	Early detection and identification of larval parasitoids in Lobesia botrana using PCR-RFLP method. Biological Control, 2016, 103, 95-100.	3.0	10
43	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	4.1	388
44	Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems and Environment, 2016, 221, 198-204.	5.3	393
45	Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic and Applied Ecology, 2015, 16, 250-259.	2.7	100
46	Organic farming and host density affect parasitism rates of tortricid moths in vineyards. Agriculture, Ecosystems and Environment, 2015, 214, 46-53.	5.3	38
47	Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia, 2014, 175, 971-983.	2.0	51
48	Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agriculture, Ecosystems and Environment, 2014, 194, 17-28.	5.3	92
49	Conservation Biocontrol: Principles and Implementation in Organic Farming. , 2014, , 83-105.		3
50	Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment, 2013, 166, 118-125.	5.3	75
51	Response of ground beetle (Coleoptera, Carabidae) communities to changes in agricultural policies in Sweden over two decades. Agriculture, Ecosystems and Environment, 2013, 176, 63-69.	5.3	24
52	Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. Journal of Applied Ecology, 2013, 50, 345-354.	4.0	172
53	Nutritional state of the pollen beetle parasitoid Tersilochus heterocerus foraging in the field. BioControl, 2013, 58, 17-26.	2.0	20
54	Using landscape indicators to predict high pest infestations and successful natural pest control at the regional scale. Landscape and Urban Planning, 2012, 105, 62-73.	7. 5	32

ADRIEN RUSCH

#	Article	IF	CITATION
55	Local and landscape determinants of pollen beetle abundance in overwintering habitats. Agricultural and Forest Entomology, 2012, 14, 37-47.	1.3	32
56	Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landscape Ecology, 2011, 26, 473-486.	4.2	81
57	Agroecosystem management and biotic interactions: a review. Agronomy for Sustainable Development, 2011, 31, 491-514.	5.3	131
58	Biological Control of Insect Pests in Agroecosystems. Advances in Agronomy, 2010, , 219-259.	5.2	165
59	Integrating Crop and Landscape Management into New Crop Protection Strategies to Enhance Biological Control of Oilseed Rape Insect Pests. , 2010, , 415-448.		12