
Tomislav FriÅ;Äić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273383/publications.pdf Version: 2024-02-01

Τομιςι Αν ΕριΔιάιά+

#	Article	IF	CITATIONS
1	Metalâ€Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angewandte Chemie, 2022, 134, e202115030.	2.0	4
2	Metalâ€Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angewandte Chemie - International Edition, 2022, 61, e202115030.	13.8	18
3	Metal–organic frameworks as hypergolic additives for hybrid rockets. Chemical Science, 2022, 13, 3424-3436.	7.4	14
4	Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light. Nature Chemistry, 2022, 14, 574-581.	13.6	17
5	Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time <i>In Situ</i> Monitoring. Accounts of Chemical Research, 2022, 55, 1262-1277.	15.6	34
6	Open versus Interpenetrated: Switchable Supramolecular Trajectories in Mechanosynthesis of a Halogen-Bonded Borromean Network. CheM, 2021, 7, 146-154.	11.7	17
7	A new class of anionic metallohelicates based on salicylic and terephthalic acid units, accessible in solution and by mechanochemistry. Chemical Communications, 2021, 57, 5143-5146.	4.1	0
8	Direct determination of the zero-field splitting for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Fe</mml:mi>ion in a synthetic polymorph of <mml:math< td=""><td>nrow><mr< td=""><td>ml:mrow><m< td=""></m<></td></mr<></td></mml:math<></mml:mrow></mml:msup></mml:math 	nrow> <mr< td=""><td>ml:mrow><m< td=""></m<></td></mr<>	ml:mrow> <m< td=""></m<>

Tomislav Friåiä_tä‡

#	Article	IF	CITATIONS
19	Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chemical Society Reviews, 2021, 50, 8279-8318.	38.1	37
20	Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. Chemical Science, 2021, 12, 14499-14506.	7.4	7
21	Scalable Mechanochemical Amorphization of Bimetallic Cuâ^'Zn MOF-74 Catalyst for Selective CO ₂ Reduction Reaction to Methanol. ACS Applied Materials & Interfaces, 2021, 13, 3070-3077.	8.0	84
22	Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect βâ€Glucosidase Activity During Ball Milling. ChemSusChem, 2020, 13, 106-110.	6.8	29
23	Mechanochemistry for Synthesis. Angewandte Chemie - International Edition, 2020, 59, 1018-1029.	13.8	615
24	Mechanochemistry for Synthesis. Angewandte Chemie, 2020, 132, 1030-1041.	2.0	153
25	Microporosity of a Guanidinium Organodisulfonate Hydrogenâ€Bonded Framework. Angewandte Chemie - International Edition, 2020, 59, 1997-2002.	13.8	45
26	Microporosity of a Guanidinium Organodisulfonate Hydrogenâ€Bonded Framework. Angewandte Chemie, 2020, 132, 2013-2018.	2.0	14
27	Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. ChemBioChem, 2020, 21, 742-758.	2.6	38
28	From Mineralogy to Crystal Engineering: Potential for Polymorphism in the Metal–Organic Framework Mineral Zhemchuzhnikovite and Its Synthetic Analogues. Crystal Growth and Design, 2020, 20, 525-532.	3.0	3
29	Real-Time in Situ Monitoring of Particle and Structure Evolution in the Mechanochemical Synthesis of UiO-66 Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 49-54.	3.0	42
30	Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Threeâ€Dimensional Structure in Mercury Imidazolate. Chemistry - A European Journal, 2020, 26, 1811-1818.	3.3	25
31	Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chemical Science, 2020, 11, 2141-2147.	7.4	64
32	Total Syntheses Supramolecular Style: Solid-State Construction of [2.2]Cyclophanes with Modular Control of Stereochemistry. Crystal Growth and Design, 2020, 20, 2584-2589.	3.0	14
33	Mechanochemical Metathesis between AgNO ₃ and NaX (X = Cl, Br, I) and Ag ₂ XNO ₃ Double-Salt Formation. Inorganic Chemistry, 2020, 59, 12200-12208.	4.0	7
34	Solvent-Free Mechanochemical Synthesis of Ultrasmall Nickel Phosphide Nanoparticles and Their Application as a Catalyst for the Hydrogen Evolution Reaction (HER). ACS Sustainable Chemistry and Engineering, 2020, 8, 12014-12024.	6.7	34
35	Challenging the Ostwald rule of stages in mechanochemical cocrystallisation. Chemical Science, 2020, 11, 10092-10100.	7.4	49
36	A Diverse View of Science to Catalyse Change. Journal of the American Chemical Society, 2020, 142, 14393-14396.	13.7	12

Tomislav Friåiäiä‡

#	Article	IF	CITATIONS
37	A diverse view of science to catalyse change. Nature Chemistry, 2020, 12, 773-776.	13.6	18
38	A diverse view of science to catalyse change. Chemical Science, 2020, 11, 9043-9047.	7.4	4
39	A Diverse View of Science to Catalyse Change. Angewandte Chemie, 2020, 132, 18462-18466.	2.0	2
40	Frontispiece: Mechanochemical Synthesis of Short DNA Fragments. Chemistry - A European Journal, 2020, 26, .	3.3	1
41	Accelerated ageing reactions: towards simpler, solvent-free, low energy chemistry. Green Chemistry, 2020, 22, 5881-5901.	9.0	43
42	A Diverse View of Science to Catalyse Change. Angewandte Chemie - International Edition, 2020, 59, 18306-18310.	13.8	7
43	A diverse view of science to catalyse change. Croatica Chemica Acta, 2020, 93, 77-81.	0.4	2
44	Linker Substituents Control the Thermodynamic Stability in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21720-21729.	13.7	36
45	Drug-Nutraceutical Co-Crystal and Salts for Making New and Improved Bi-Functional Analgesics. Pharmaceutics, 2020, 12, 1144.	4.5	7
46	Halogen bonding to the azulene π-system: cocrystal design of pleochroism. Chemical Communications, 2020, 56, 15145-15148.	4.1	18
47	Solvent-free ageing reactions of rare earth element oxides: from geomimetic synthesis of new metal–organic materials towards a simple, environmentally friendly separation of scandium. Green Chemistry, 2020, 22, 4364-4375.	9.0	8
48	<i>Ab Initio</i> Prediction of Metal-Organic Framework Structures. Chemistry of Materials, 2020, 32, 5835-5844.	6.7	11
49	Mechanochemical reactions of cocrystals: comparing theory with experiment in the making and breaking of halogen bonds in the solid state. Chemical Communications, 2020, 56, 8293-8296.	4.1	18
50	No regioselectivity for the steroid α-face in cocrystallization of exemestane with aromatic cocrystal formers based on phenanthrene and pyrene. Canadian Journal of Chemistry, 2020, 98, 386-393.	1.1	1
51	A Truly Polymorphic Issue in Honor of Prof Joel Bernstein. Crystal Growth and Design, 2020, 20, 2819-2823.	3.0	2
52	Catalytic Roomâ€Temperature Câ^'N Coupling of Amides and Isocyanates by Using Mechanochemistry. ChemSusChem, 2020, 13, 2966-2972.	6.8	17
53	Mechanochemical Synthesis of Short DNA Fragments. Chemistry - A European Journal, 2020, 26, 8857-8861.	3.3	16
54	Simple, scalable mechanosynthesis of metal–organic frameworks using liquid-assisted resonant acoustic mixing (LA-RAM). Chemical Science, 2020, 11, 7578-7584.	7.4	55

#	Article	IF	CITATIONS
55	Thermodynamic Evidence of Structural Transformations in CO ₂ -Loaded Metal–Organic Framework Zn(Melm) ₂ from Heat Capacity Measurements. Journal of the American Chemical Society, 2020, 142, 4833-4841.	13.7	22
56	In situ monitoring of mechanochemical synthesis of calcium urea phosphate fertilizer cocrystal reveals highly effective water-based autocatalysis. Chemical Science, 2020, 11, 2350-2355.	7.4	40
57	Exploring the Scope of Macrocyclic "Shoe-last―Templates in the Mechanochemical Synthesis of RHO Topology Zeolitic Imidazolate Frameworks (ZIFs). Molecules, 2020, 25, 633.	3.8	3
58	The Morpholinyl Oxygen Atom as an Acceptor Site for Halogen-Bonded Cocrystallization of Organic and Metal–Organic Units. Crystal Growth and Design, 2020, 20, 3617-3624.	3.0	14
59	NMR-Enhanced Crystallography Aids Open Metal–Organic Framework Discovery Using Solvent-Free Accelerated Aging. Chemistry of Materials, 2020, 32, 4273-4281.	6.7	19
60	Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment. Green Chemistry, 2020, 22, 3877-3884.	9.0	21
61	A diverse view of science to catalyse change: valuing diversity leads to scientific excellence, the progress of science and, most importantly, it is simply the right thing to do. We must value diversity not only in words, but also in actions. Canadian Journal of Chemistry, 2020, 98, 597-600.	1.1	2
62	Pore-Scale Modeling of the Fuel Cell Catalyst Layer: The Role of Nafion Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 124-124.	0.0	0
63	Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501.	6.7	96
64	Hypergolic Triggers as Coâ€crystal Formers: Coâ€crystallization for Creating New Hypergolic Materials with Tunable Energy Content. Angewandte Chemie - International Edition, 2019, 58, 18399-18404.	13.8	25
65	Hypergolic Triggers as Coâ€crystal Formers: Coâ€crystallization for Creating New Hypergolic Materials with Tunable Energy Content. Angewandte Chemie, 2019, 131, 18570-18575.	2.0	7
66	Size ontrol by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 6230-6234.	13.8	34
67	Size ontrol by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie, 2019, 131, 6296-6300.	2.0	8
68	Mechanoenzymatic Breakdown of Chitinous Material to <i>N</i> â€Acetylglucosamine: The Benefits of a Solventless Environment. ChemSusChem, 2019, 12, 3481-3490.	6.8	47
69	Geomimetic approaches in the design and synthesis of metal-organic frameworks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180221.	3.4	14
70	Metal–Organic Frameworks as Fuels for Advanced Applications: Evaluating and Modifying the Combustion Energy of Popular MOFs. Chemistry of Materials, 2019, 31, 4882-4888.	6.7	21
71	Heat capacity and thermodynamic functions of crystalline forms of the metal-organic framework zinc 2-methylimidazolate, Zn(MeIm)2. Journal of Chemical Thermodynamics, 2019, 136, 160-169.	2.0	11
72	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.	8.0	31

#	Article	IF	CITATIONS
73	Theoretical Prediction and Experimental Evaluation of Topological Landscape and Thermodynamic Stability of a Fluorinated Zeolitic Imidazolate Framework. Chemistry of Materials, 2019, 31, 3777-3783.	6.7	31
74	Mechanochemical Synthesis, Accelerated Aging, and Thermodynamic Stability of the Organic Mineral Paceite and Its Cadmium Analogue. ACS Omega, 2019, 4, 5486-5495.	3.5	17
75	Introducing Students to Mechanochemistry via Environmentally Friendly Organic Synthesis Using a Solvent-Free Mechanochemical Preparation of the Antidiabetic Drug Tolbutamide. Journal of Chemical Education, 2019, 96, 766-771.	2.3	44
76	Mechanochemical Phosphorylation of Polymers and Synthesis of Flame-Retardant Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2019, 7, 7951-7959.	6.7	98
77	Rücktitelbild: Sizeâ€Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State (Angew. Chem. 19/2019). Angewandte Chemie, 2019, 131, 6524-6524.	2.0	0
78	Functionality in metal–organic framework minerals: proton conductivity, stability and potential for polymorphism. Chemical Science, 2019, 10, 4923-4929.	7.4	32
79	Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: Unlocking the latent energetic behavior of ZIFs. Science Advances, 2019, 5, eaav9044.	10.3	52
80	Professor William Jones and His Materials Chemistry Group: Innovations and Advances in the Chemistry of Solids. Crystal Growth and Design, 2019, 19, 1479-1487.	3.0	2
81	Cocrystal trimorphism as a consequence of the orthogonality of halogen- and hydrogen-bonds synthons. Chemical Communications, 2019, 55, 14066-14069.	4.1	13
82	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	13.7	73
83	Efficient Enzymatic Hydrolysis of Biomass Hemicellulose in the Absence of Bulk Water. Molecules, 2019, 24, 4206.	3.8	35
84	Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst. Beilstein Journal of Nanotechnology, 2019, 10, 2422-2427.	2.8	14
85	Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. Nature Communications, 2019, 10, 61.	12.8	78
86	Multiphysics Simulation of Fuel Cell Catalyst Layer Performance with Pore-Scale Resolution from Ionomer Domains to Inter-Agglomerate Pores. ECS Meeting Abstracts, 2019, , .	0.0	0
87	Experimental and Theoretical Investigation of Structures, Stoichiometric Diversity, and Bench Stability of Cocrystals with a Volatile Halogen Bond Donor. Crystal Growth and Design, 2018, 18, 2387-2396.	3.0	19
88	Computational evaluation of metal pentazolate frameworks: inorganic analogues of azolate metal–organic frameworks. Chemical Science, 2018, 9, 3367-3375.	7.4	39
89	Investigation of BINOL-3,3′-dicarboxylate as a ligand for the formation of extended coordination-based structures. Supramolecular Chemistry, 2018, 30, 488-503.	1.2	4
90	Solventâ€Free Enzyme Activity: Quick, High‥ielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie - International Edition, 2018, 57, 2621-2624.	13.8	72

#	Article	IF	CITATIONS
91	Oxidative Mechanochemistry: Direct, Roomâ€Temperature, Solventâ€Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes. Angewandte Chemie, 2018, 130, 2697-2701.	2.0	17
92	Oxidative Mechanochemistry: Direct, Roomâ€Temperature, Solventâ€Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes. Angewandte Chemie - International Edition, 2018, 57, 2667-2671.	13.8	52
93	Solventâ€Free Enzyme Activity: Quick, Highâ€Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie, 2018, 130, 2651-2654.	2.0	34
94	Enthalpy <i>vs.</i> friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks. Chemical Science, 2018, 9, 2525-2532.	7.4	77
95	Mechanochemical nanoparticle functionalization for liquid crystal nanocomposites based on COOH-pyridine heterosynthons. Journal of Materials Chemistry C, 2018, 6, 1789-1796.	5.5	6
96	Cover Feature: Mechanochemistry for Organic Chemists: An Update (Eur. J. Org. Chem. 1/2018). European Journal of Organic Chemistry, 2018, 2018, 2-2.	2.4	1
97	Comparison of isomeric <i>meta</i> - and <i>para</i> -diiodotetrafluorobenzene as halogen bond donors in crystal engineering. New Journal of Chemistry, 2018, 42, 10584-10591.	2.8	42
98	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	3.0	36
99	Towards the systematic crystallisation of molecular ionic cocrystals: insights from computed crystal form landscapes. Faraday Discussions, 2018, 211, 401-424.	3.2	20
100	Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2. Journal of Chemical Thermodynamics, 2018, 116, 341-351.	2.0	19
101	Why pregnenolone and progesterone, two structurally similar steroids, exhibit remarkably different cocrystallization with aromatic molecules. Physical Chemistry Chemical Physics, 2018, 20, 898-904.	2.8	5
102	Halogen-Bonded Cocrystals as Optical Materials: Next-Generation Control over Light–Matter Interactions. Crystal Growth and Design, 2018, 18, 1245-1259.	3.0	115
103	Mechanochemistry for Organic Chemists: An Update. European Journal of Organic Chemistry, 2018, 2018, 18-33.	2.4	245
104	Mechanochemistry <i>vs.</i> solution growth: striking differences in bench stability of a cimetidine salt based on a synthetic method. CrystEngComm, 2018, 20, 7242-7247.	2.6	7
105	Understanding geology through crystal engineering: coordination complexes, coordination polymers and metal–organic frameworks as minerals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 539-559.	1.1	18
106	Highly Photostable and Fluorescent Microporous Solids Prepared via Solid-State Entrapment of Boron Dipyrromethene Dyes in a Nascent Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 16882-16887.	13.7	56
107	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	6.7	120
108	Time-Dependent Density-Functional Theory for Modeling Solid-State Fluorescence Emission of Organic Multicomponent Crystals. Journal of Physical Chemistry A, 2018, 122, 7514-7521.	2.5	9

#	Article	IF	CITATIONS
109	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	4.1	63
110	Use of a "Shoe-Last―Solid-State Template in the Mechanochemical Synthesis of High-Porosity RHO-Zinc Imidazolate. Journal of the American Chemical Society, 2018, 140, 10104-10108.	13.7	27
111	Welcoming Gallium- and Indium-Fumarate MOFs to the Family: Synthesis, Comprehensive Characterization, Observation of Porous Hydrophobicity, and CO ₂ Dynamics. ACS Applied Materials & Interfaces, 2018, 10, 28582-28596.	8.0	30
112	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	6.0	37
113	A chlorine-free protocol for processing germanium. Science Advances, 2017, 3, e1700149.	10.3	41
114	Assembly and dichroism of a four-component halogen-bonded metal–organic cocrystal salt solvate involving dicyanoaurate(I) acceptors. Faraday Discussions, 2017, 203, 441-457.	3.2	29
115	Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions. Journal of the American Chemical Society, 2017, 139, 7952-7957.	13.7	93
116	Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases. Chemistry - A European Journal, 2017, 23, 13941-13949.	3.3	70
117	In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal–Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity. Inorganic Chemistry, 2017, 56, 6599-6608.	4.0	98
118	Mechanochemistry: A Force of Synthesis. ACS Central Science, 2017, 3, 13-19.	11.3	868
119	Carbodiimide insertion into sulfonimides: one-step route to azepine derivatives via a two-atom saccharin ring expansion. Chemical Communications, 2017, 53, 901-904.	4.1	19
120	Efficient and Rapid Mechanochemical Assembly of Platinum(II) Squares for Guanine Quadruplex Targeting. Journal of the American Chemical Society, 2017, 139, 16913-16922.	13.7	48
121	Mechanically Activated Solvent-Free Assembly of Ultrasmall Bi ₂ S ₃ Nanoparticles: A Novel, Simple, and Sustainable Means To Access Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 7766-7773.	6.7	39
122	Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry. Synlett, 2017, 28, 2066-2092.	1.8	119
123	Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 2017, 19, 2729-2747.	9.0	327
124	A Large Family of Halogen-Bonded Cocrystals Involving Metal–Organic Building Blocks with Open Coordination Sites. Crystal Growth and Design, 2017, 17, 6169-6173.	3.0	42
125	The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy. Beilstein Journal of Organic Chemistry, 2017, 13, 2160-2168.	2.2	58
126	Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules, 2017, 22, 144.	3.8	116

#	Article	IF	CITATIONS
127	Solid-state mechanochemical ω-functionalization of poly(ethylene glycol). Beilstein Journal of Organic Chemistry, 2017, 13, 1963-1968.	2.2	24
128	2016 New talent: crystal engineering at its biggest and strongest. CrystEngComm, 2016, 18, 3963-3967.	2.6	1
129	Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chemical Communications, 2016, 52, 7760-7781.	4.1	303
130	The First Synthesis of the Sterically Encumbered Adamantoid Phosphazane P ₄ (N ^{<i>t</i>} Bu) ₆ : Enabled by Mechanochemistry. Angewandte Chemie, 2016, 128, 12928-12932.	2.0	30
131	The First Synthesis of the Sterically Encumbered Adamantoid Phosphazane P ₄ (N ^{<i>t</i>} Bu) ₆ : Enabled by Mechanochemistry. Angewandte Chemie - International Edition, 2016, 55, 12736-12740.	13.8	98
132	Minerals with metal-organic framework structures. Science Advances, 2016, 2, e1600621.	10.3	48
133	Photo-induced motion of azo dyes in organized media: from single and liquid crystals, to MOFs and machines. CrystEngComm, 2016, 18, 7204-7211.	2.6	40
134	One-step, solvent-free mechanosynthesis of silver nanoparticle-infused lignin composites for use as highly active multidrug resistant antibacterial filters. RSC Advances, 2016, 6, 58365-58370.	3.6	61
135	Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52, 2133-2136.	4.1	256
136	Azoâ√phenyl stacking: a persistent self-assembly motif guides the assembly of fluorinated cis-azobenzenes into photo-mechanical needle crystals. Chemical Communications, 2016, 52, 2103-2106.	4.1	35
137	In situ monitoring of vapour-induced assembly of pharmaceutical cocrystals using a benchtop powder X-ray diffractometer. Chemical Communications, 2016, 52, 5120-5123.	4.1	26
138	<i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.	13.7	194
139	Exploring the Effect of Temperature on a Mechanochemical Reaction by in Situ Synchrotron Powder X-ray Diffraction. Crystal Growth and Design, 2016, 16, 2342-2347.	3.0	93
140	One-step ligand exchange and switching from hydrophobic to water-stable hydrophilic superparamagnetic iron oxide nanoparticles by mechanochemical milling. Chemical Communications, 2016, 52, 3054-3057.	4.1	31
141	Controlling Dichroism of Molecular Crystals by Cocrystallization. Crystal Growth and Design, 2016, 16, 541-545.	3.0	41
142	Redox-promoted associative assembly of metal–organic materials. Chemical Science, 2016, 7, 707-712.	7.4	25
143	Naturally occuring metal-organic frameworks. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s57-s58.	0.1	2
144	Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl <i>N</i> â€Thiocarbamoylbenzotriazoles as Benchâ€Stable Reagents. Angewandte Chemie - International Edition, 2015, 54, 8440-8443.	13.8	74

#	Article	IF	CITATIONS
145	Mechanochemical Ruthenium-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2015, 137, 2476-2479.	13.7	134
146	Molecular Recognition of Steroid Hormones in the Solid State: Stark Differences in Cocrystallization of Î ² -Estradiol and Estrone. Crystal Growth and Design, 2015, 15, 1492-1501.	3.0	21
147	A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chemical Communications, 2015, 51, 4032-4035.	4.1	117
148	Supramolecular imidazolium frameworks: direct analogues of metal azolate frameworks with charge-inverted node-and-linker structure. Chemical Communications, 2015, 51, 8924-8927.	4.1	22
149	In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Communications, 2015, 6, 6662.	12.8	294
150	Highlights from Faraday discussion 170: Challenges and opportunities of modern mechanochemistry, Montreal, Canada, 2014. Chemical Communications, 2015, 51, 6248-6256.	4.1	45
151	Metal-catalyzed organic reactions using mechanochemistry. Tetrahedron Letters, 2015, 56, 4253-4265.	1.4	172
152	Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists. Journal of Physical Chemistry Letters, 2015, 6, 4129-4140.	4.6	149
153	Fluorinated azobenzenes with highly strained geometries for halogen bond-driven self-assembly in the solid state. CrystEngComm, 2015, 17, 73-80.	2.6	27
154	Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs). ACS Symposium Series, 2014, , 161-183.	0.5	12
155	Probing solid-state reaction mechanisms with THz-TDS. , 2014, , .		0
156	Chapter 7. Ball-milling Mechanochemical Synthesis of Coordination Bonds: Discrete Units, Polymers and Porous Materials. RSC Green Chemistry, 2014, , 151-189.	0.1	5
157	Synthesis of an extended halogen-bonded metal–organic structure in a one-pot mechanochemical reaction that combines covalent bonding, coordination chemistry and supramolecular synthesis. CrystEngComm, 2014, 16, 10169-10172.	2.6	41
158	Mimicking mineral neogenesis for the clean synthesis of metal–organic materials from mineral feedstocks: coordination polymers, MOFs and metal oxide separation. Green Chemistry, 2014, 16, 121-132.	9.0	46
159	Laboratory Realâ€Time and In Situ Monitoring of Mechanochemical Milling Reactions by Raman Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 6193-6197.	13.8	160
160	Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chemical Communications, 2014, 50, 5248-5250.	4.1	114
161	Mechanosynthesis of ultra-small monodisperse amine-stabilized gold nanoparticles with controllable size. Green Chemistry, 2014, 16, 86-89.	9.0	92
162	Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions, 2014, 170, 155-167.	3.2	81

#	Article	IF	CITATIONS
163	Quantitative in situ and real-time monitoring of mechanochemical reactions. Faraday Discussions, 2014, 170, 203-221.	3.2	73
164	2014 International year of crystallography celebration: North America. CrystEngComm, 2014, 16, 7160.	2.6	1
165	Rapid and facile solvent-free mechanosynthesis in a cell lysis mill: preparation and mechanochemical complexation of aminobenzoquinones. CrystEngComm, 2014, 16, 7180.	2.6	24
166	Development of CN Coupling Using Mechanochemistry: Catalytic Coupling of Arylsulfonamides and Carbodiimides. Angewandte Chemie - International Edition, 2014, 53, 9321-9324.	13.8	103
167	A mechanochemical strategy for oxidative addition: remarkable yields and stereoselectivity in the halogenation of organometallic Re(<scp>i</scp>) complexes. Green Chemistry, 2014, 16, 1087-1092.	9.0	70
168	Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerisation. Chemical Science, 2014, 5, 3158-3164.	7.4	139
169	Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions. Chemical Science, 2014, 5, 3576.	7.4	87
170	Carbon Dioxide Sensitivity of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2014, 53, 7471-7474.	13.8	71
171	Mechanochemistry. Chemical Society Reviews, 2013, 42, 7494.	38.1	139
172	Shaping Crystals with Light: Crystal-to-Crystal Isomerization and Photomechanical Effect in Fluorinated Azobenzenes. Journal of the American Chemical Society, 2013, 135, 12556-12559.	13.7	268
173	In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nature Protocols, 2013, 8, 1718-1729.	12.0	132
174	Realâ€Time Inâ€Situ Powder Xâ€ray Diffraction Monitoring of Mechanochemical Synthesis of Pharmaceutical Cocrystals. Angewandte Chemie - International Edition, 2013, 52, 11538-11541.	13.8	141
175	Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers. Langmuir, 2013, 29, 14903-14911.	3.5	15
176	The monolayer structure of 1,2-bis(4-pyridyl)ethylene physisorbed on a graphite surface. Molecular Physics, 2013, 111, 73-79.	1.7	14
177	Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2013, 5, 66-73.	13.6	493
178	Isostructurality in three-component crystals achieved by the combination of persistent hydrogen bonding motifs and solvent inclusion. CrystEngComm, 2013, 15, 1332.	2.6	24
179	Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15, 2121.	9.0	133
180	Mechanochemistry: a web themed issue. Chemical Communications, 2013, 49, 5349.	4.1	33

Tomislav Friåiä_tä‡

#	Article	IF	CITATIONS
181	Characterisation of organic solid forms and real-time in situ monitoring of their transformations using solid-state fluorescence. CrystEngComm, 2013, 15, 5100.	2.6	28
182	Innenrücktitelbild: Real-Time Inâ€Situ Powder X-ray Diffraction Monitoring of Mechanochemical Synthesis of Pharmaceutical Cocrystals (Angew. Chem. 44/2013). Angewandte Chemie, 2013, 125, 11881-11881.	2.0	0
183	Schiff bases derived from hydroxyaryl aldehydes: molecular and crystal structure, tautomerism, quinoid effect, coordination compounds. Macedonian Journal of Chemistry and Chemical Engineering, 2013, 29, 117.	0.6	99
184	Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic Frameworks and Metallodrugs. Croatica Chemica Acta, 2012, 85, 367-378.	0.4	67
185	Isostructural organic binary-host frameworks with tuneable and diversely decorated inclusion cavities. CrystEngComm, 2012, 14, 7898.	2.6	26
186	Mechanosynthesis of nitrosobenzenes: a proof-of-principle study in combining solvent-free synthesis with solvent-free separations. Green Chemistry, 2012, 14, 1597.	9.0	50
187	A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents. Green Chemistry, 2012, 14, 2462.	9.0	80
188	Desymmetrisation of aromatic diamines and synthesis of non-symmetrical thiourea derivatives by click-mechanochemistry. Chemical Communications, 2012, 48, 9705.	4.1	76
189	Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chemical Society Reviews, 2012, 41, 3493.	38.1	531
190	Solid state grinding as a tool to aid enantiomeric resolution by cocrystallisation. Chemical Communications, 2012, 48, 11340.	4.1	46
191	The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm, 2012, 14, 2350.	2.6	226
192	Switching between halogen- and hydrogen-bonding in stoichiometric variations of a cocrystal of a phosphine oxide. CrystEngComm, 2012, 14, 6110.	2.6	41
193	Modification of luminescent properties of a coumarin derivative by formation of multi-component crystals. CrystEngComm, 2012, 14, 5121.	2.6	59
194	[2.2]Paracyclophane as a Target of the Organic Solid State: Emergent Properties via Supramolecular Construction. Israel Journal of Chemistry, 2012, 52, 53-59.	2.3	19
195	Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chemical Science, 2012, 3, 2495-2500.	7.4	181
196	Click Mechanochemistry: Quantitative Synthesis of "Ready to Use―Chiral Organocatalysts by Efficient Twoâ€Fold Thiourea Coupling to Vicinal Diamines. Chemistry - A European Journal, 2012, 18, 8464-8473.	3.3	79
197	Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41, 413-447.	38.1	2,281
198	Monolayer structures of 4,4′ bipyridine on graphite at sub-monolayer coverage. Molecular Physics, 2011, 109, 477-481.	1.7	8

#	Article	IF	CITATIONS
199	Experimental and database studies of three-centered halogen bonds with bifurcated acceptors present in molecular crystals, cocrystals and salts. CrystEngComm, 2011, 13, 3224.	2.6	85
200	Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2011, 133, 14546-14549.	13.7	184
201	Dynamic behaviour in the solid state. CrystEngComm, 2011, 13, 4303.	2.6	3
202	Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chemical Science, 2011, 2, 696.	7.4	165
203	Application of Mechanochemistry in the Synthesis and Discovery of New Pharmaceutical Forms: Co-crystals, Salts and Coordination Compounds. RSC Drug Discovery Series, 2011, , 154-187.	0.3	4
204	A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding. CrystEngComm, 2011, 13, 3125.	2.6	40
205	Observation of a two-dimensional halogen-bonded cocrystal at sub-monolayer coverage using synchrotron X-ray diffraction. Chemical Communications, 2011, 47, 2526-2528.	4.1	35
206	Softening and Hardening of Macro―and Nanoâ€Sized Organic Cocrystals in a Singleâ€Crystal Transformation. Angewandte Chemie - International Edition, 2011, 50, 8642-8646.	13.8	92
207	Mechanosynthesis of the Metallodrug Bismuth Subsalicylate from Bi ₂ O ₃ and Structure of Bismuth Salicylate without Auxiliary Organic Ligands. Angewandte Chemie - International Edition, 2011, 50, 7858-7861.	13.8	110
208	A Cocrystal Strategy to Tune the Luminescent Properties of Stilbeneâ€Type Organic Solidâ€State Materials. Angewandte Chemie - International Edition, 2011, 50, 12483-12486.	13.8	463
209	Contrasts between organic participation in apatite biomineralization in brachiopod shell and vertebrate bone identified by nuclear magnetic resonance spectroscopy. Journal of the Royal Society Interface, 2011, 8, 282-288.	3.4	16
210	Crystal engineering rescues a solution organic synthesis in a cocrystallization that confirms the configuration of a molecular ladder. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10974-10979.	7.1	29
211	A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal–organic materials. CrystEngComm, 2010, 12, 2409.	2.6	74
212	Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal–organic compounds. Chemical Communications, 2010, 46, 9191.	4.1	101
213	New opportunities for materials synthesis using mechanochemistry. Journal of Materials Chemistry, 2010, 20, 7599.	6.7	313
214	A Threeâ€Component Modular Strategy to Extend and Link Coordination Complexes by Using Halogen Bonds to O, S and π Acceptors. Chemistry - A European Journal, 2010, 16, 7400-7403.	3.3	62
215	lon―and Liquidâ€Assisted Grinding: Improved Mechanochemical Synthesis of Metal–Organic Frameworks Reveals Salt Inclusion and Anion Templating. Angewandte Chemie - International Edition, 2010, 49, 712-715.	13.8	343
216	High Reactivity of Metal–Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials. Angewandte Chemie - International Edition, 2010, 49, 3916-3919.	13.8	183

#	Article	IF	CITATIONS
217	Rapid Roomâ€Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie - International Edition, 2010, 49, 9640-9643.	13.8	378
218	Tunable recognition of the steroid α-face by adjacent ï€-electron density. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13216-13221.	7.1	54
219	Benefits of cocrystallisation in pharmaceutical materials science: an update. Journal of Pharmacy and Pharmacology, 2010, 62, 1547-1559.	2.4	200
220	Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry. Chemical Communications, 2010, 46, 6368.	4.1	82
221	Predicting stoichiometry and structure of solvates. Chemical Communications, 2010, 46, 2224.	4.1	78
222	New solid forms of artemisinin obtained through cocrystallisation. CrystEngComm, 2010, 12, 4038.	2.6	75
223	Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol. Advanced Materials, 2009, 21, 3905-3909.	21.0	451
224	Oneâ€Pot Mechanosynthesis with Three Levels of Molecular Selfâ€Assembly: Coordination Bonds, Hydrogen Bonds and Host–Guest Inclusion. Chemistry - A European Journal, 2009, 15, 12644-12652.	3.3	61
225	Testing the Sensitivity of Terahertz Spectroscopy to Changes in Molecular and Supramolecular Structure: A Study of Structurally Similar Cocrystals. Crystal Growth and Design, 2009, 9, 1452-1460.	3.0	99
226	Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm, 2009, 11, 470-481.	2.6	204
227	The Mineral Phase of Calcified Cartilage: Its Molecular Structure and Interface with the Organic Matrix. Biophysical Journal, 2009, 96, 3372-3378.	0.5	67
228	Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm, 2009, 11, 743.	2.6	214
229	Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Crystal Growth and Design, 2009, 9, 1621-1637.	3.0	637
230	Engineering cocrystal and polymorph architecture via pseudoseeding. Chemical Communications, 2009, , 773.	4.1	43
231	The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm, 2009, 11, 418-426.	2.6	479
232	Three-component molecular assembly using mechanochemical grinding. Annales De Chimie: Science Des Materiaux, 2009, 34, 415-428.	0.4	9
233	Isostructural Materials Achieved by Using Structurally Equivalent Donors and Acceptors in Halogenâ€Bonded Cocrystals. Chemistry - A European Journal, 2008, 14, 747-753.	3.3	236
234	A Stepwise Mechanism for the Mechanochemical Synthesis of Halogen-Bonded Cocrystal Architectures. Journal of the American Chemical Society, 2008, 130, 7524-7525.	13.7	184

#	Article	IF	CITATIONS
235	Structural Equivalence of Br and I Halogen Bonds: A Route to Isostructural Materials with Controllable Properties. Chemistry of Materials, 2008, 20, 6623-6626.	6.7	95
236	Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients. Crystal Growth and Design, 2008, 8, 1697-1712.	3.0	293
237	Guest-Directed Assembly of Caffeine and Succinic Acid into Topologically Different Heteromolecular Host Networks upon Grinding. Crystal Growth and Design, 2008, 8, 1605-1609.	3.0	100
238	A cocrystallisation-based strategy to construct isostructural solids. New Journal of Chemistry, 2008, 32, 1776.	2.8	77
239	General application of mechanochemistry to templated solid-state reactivity: rapid and solvent-free access to crystalline supermolecules. Chemical Communications, 2008, , 5713.	4.1	52
240	Exploring the relationship between cocrystal stability and symmetry: is Wallach's rule applicable to multi-component solids?. Chemical Communications, 2008, , 1644.	4.1	70
241	Supramolecular Control of Reactivity in the Solid State: From Templates to Ladderanes to Metalâ°'Organic Frameworks. Accounts of Chemical Research, 2008, 41, 280-291.	15.6	613
242	He I Photoelectron Spectra and Gas-Phase Electronic Structures of End-Functionalized [3]- and [5]-Ladderanes. Journal of Physical Chemistry A, 2008, 112, 1493-1496.	2.5	5
243	Mineral Surface in Calcified Plaque Is Like That of Bone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2030-2034.	2.4	95
244	Probing solids through THz spectroscopy: Differentiation of chiral and racemic forms of isostructural and non-isostructural cocrystals. , 2008, , .		0
245	Using terahertz time-domain spectroscopy to identify pharmaceutical cocrystals. , 2007, , .		2
246	Cocrystal architecture and properties: design and building of chiral and racemic structures by solid–solid reactions. Faraday Discussions, 2007, 136, 167.	3.2	103
247	Powder X-ray Diffraction as an Emerging Method to Structurally Characterize Organic Solids. Organic Letters, 2007, 9, 3133-3136.	4.6	100
248	Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nature Materials, 2007, 6, 206-209.	27.5	266
249	Screening for Pharmaceutical Cocrystal Hydrates via Neat and Liquid-Assisted Grinding. Molecular Pharmaceutics, 2007, 4, 347-354.	4.6	288
250	Persistent One-Dimensional Face-to-Face π-Stacks within Organic Cocrystals. Crystal Growth and Design, 2006, 6, 2427-2428.	3.0	49
251	Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals. Journal of the American Chemical Society, 2006, 128, 2806-2807.	13.7	250
252	Exploring cocrystal–cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. Chemical Communications, 2006, , 5009-5011.	4.1	102

#	Article	IF	CITATIONS
253	Heteroditopic Rebek's Imide Directs the Reactivity of Homoditopic Olefins within Desolvated Quaternary Assemblies in the Solid State. Angewandte Chemie - International Edition, 2006, 45, 646-650.	13.8	70
254	Screening for Inclusion Compounds and Systematic Construction of Three-Component Solids by Liquid-Assisted Grinding. Angewandte Chemie - International Edition, 2006, 45, 7546-7550.	13.8	339
255	Increasing the Landscape of Structural Motifs in Co-crystals of Resorcinols with Ditopic Aromatics: A One-dimensional ïE-Stacked Hydrogen-Bonded Polymer Involving a Phenanthroline. Molecular Crystals and Liquid Crystals, 2006, 456, 155-162.	0.9	4
256	A Step Towards a [2.2]Paracyclophane: A Single Crystal to Single Crystal Reaction Involving a Hydrogen-Bonded Molecular Assembly with Multiple Reaction Centres. Australian Journal of Chemistry, 2006, 59, 613.	0.9	27
257	Crystal and molecular structure of trans,trans-9,10-bis(4-pyridylethenyl)anthracene. Journal of Structural Chemistry, 2005, 46, S171-S174.	1.0	4
258	Cyclophanes and Ladderanes: Molecular Targets for Supramolecular Chemists. Supramolecular Chemistry, 2005, 17, 47-51.	1.2	32
259	Single-crystal-to-single-crystal [2Â+Â2] photodimerizations: from discovery to design. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 351-363.	0.8	129
260	Reversing the code of a template-directed solid-state synthesis: a bipyridine template that directs a single-crystal-to-single-crystal [2 + 2] photodimerisation of a dicarboxylic acid. Chemical Communications, 2005, , 5748.	4.1	69
261	Directed assembly and reactivity of olefins within a one-dimensional ladder-like coordination polymer based on a dinuclear Zn(ii) platform. Chemical Communications, 2005, , 3974.	4.1	87
262	A Template-Controlled Solid-State Reaction for the Organic Chemistry Laboratory. Journal of Chemical Education, 2005, 82, 1679.	2.3	13
263	Design and Construction of a 2D Metal Organic Framework with Multiple Cavities:Â A Nonregular Net with a Paracyclophane that Codes for Multiply Fused Nodes. Journal of the American Chemical Society, 2005, 127, 14160-14161.	13.7	75
264	Crystal and molecular structure of Rebek's imide. Journal of Chemical Crystallography, 2004, 34, 171-174.	1.1	4
265	Supramolecular Construction of Molecular Ladders in the Solid State. Angewandte Chemie - International Edition, 2004, 43, 232-236.	13.8	269
266	Cover Picture: Supramolecular Construction of Molecular Ladders in the Solid State (Angew. Chem.) Tj ETQq0 0	0 rgBT /Ov ₽3.8	verlock 10 Tf !
267	Self-assembled metal–organic squares derived from linear templates as exemplified by a polydentate ligand that provides access to both a polygon and polyhedron. Chemical Communications, 2004, , 270-271.	4.1	24
268	A Test for Homology:  Photoactive Crystalline Assemblies Involving Linear Templates Based on a Homologous Series of Phloroglucinols. Organic Letters, 2004, 6, 4647-4650.	4.6	64
269	Double inclusion of ferrocene within a doubly interpenetrated three-dimensional framework based on a resorcin[4]arene. Journal of Organometallic Chemistry, 2003, 666, 43-48.	1.8	20
270	â€~Template-switching': a supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chemical Communications, 2003, , 1306-1307.	4.1	99

#	Article	IF	CITATIONS
271	'Template-switching': a supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chemical Communications, 2003, , 1306-7.	4.1	2
272	Enantiomeric bis(μ-N,N′-hexamethylenedisalicylaldiminato)dicopper(II) complexes. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m313-m315.	0.4	6
273	Template-Controlled Synthesis in the Solid-State. Topics in Current Chemistry, 0, , 201-221.	4.0	91
274	After 200 Years: The Structure of Bleach and Characterization of Hypohalite Ions by Single rystal Xâ€Ray Diffraction**. Angewandte Chemie, 0, , .	2.0	0
275	Making Crystals by Reactions in Crystals. Supramolecular Approaches to Crystal-to-Crystal Transformations within Molecular Co-Crystals. , 0, , 176-192.		0