Long Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4273101/publications.pdf

Version: 2024-02-01

65 papers

4,668 citations

39 h-index 110387 64 g-index

68 all docs

68
docs citations

68 times ranked 7776 citing authors

#	Article	IF	CITATIONS
1	Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1â^'xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 2020, 5, 79-88.	39.5	412
2	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Advanced Energy Materials, 2018, 8, 1801257.	19.5	242
3	Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2193-2199.	10.3	232
4	Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO 2 nanoparticles and loading MoS 2 nanosheets as Co-catalyst. International Journal of Hydrogen Energy, 2014, 39, 19502-19512.	7.1	160
5	Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. Journal of Materials Chemistry, 2012, 22, 4921.	6.7	158
6	Photoelectrochemical-type sunlight photodetector based on MoS ₂ /graphene heterostructure. 2D Materials, 2015, 2, 035011.	4.4	158
7	Nanodroplets for Stretchable Superconducting Circuits. Advanced Functional Materials, 2016, 26, 8111-8118.	14.9	158
8	Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Applied Surface Science, 2014, 299, 12-18.	6.1	144
9	Self-Assembled Three-Dimensional Graphene-Based Aerogel with Embedded Multifarious Functional Nanoparticles and Its Excellent Photoelectrochemical Activities. ACS Sustainable Chemistry and Engineering, 2014, 2, 741-748.	6.7	143
10	Facile hydrothermal synthesis of NiMoO ₄ @CoMoO ₄ hierarchical nanospheres for supercapacitor applications. Physical Chemistry Chemical Physics, 2015, 17, 20795-20804.	2.8	143
11	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	11.2	141
12	Self-assembled free-standing three-dimensional nickel nanoparticle/graphene aerogel for direct ethanol fuel cells. Journal of Materials Chemistry A, 2013, 1, 5689.	10.3	139
13	3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Scientific Reports, 2015, 5, 14229.	3.3	139
14	One-pot synthesis of hierarchically nanostructured Ni3S2 dendrites as active materials for supercapacitors. Electrochimica Acta, 2014, 149, 316-323.	5.2	124
15	Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution. Electrochimica Acta, 2016, 200, 142-151.	5.2	121
16	Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material. Journal of Materials Chemistry, 2012, 22, 11765.	6.7	119
17	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	17.4	111
18	A Liquidâ€Metalâ€Based Magnetoactive Slurry for Stimuliâ€Responsive Mechanically Adaptive Electrodes. Advanced Materials, 2018, 30, e1802595.	21.0	106

#	Article	IF	Citations
19	Recent progress on liquid metals and their applications. Advances in Physics: X, 2018, 3, 1446359.	4.1	85
20	Liquid metals and their hybrids as stimulus–responsive smart materials. Materials Today, 2020, 34, 92-114.	14.2	78
21	Monolayer Epitaxial Heterostructures for Selective Visibleâ€Lightâ€Driven Photocatalytic NO Oxidation. Advanced Functional Materials, 2019, 29, 1808084.	14.9	76
22	Photoresponse properties of ultrathin Bi 2 Se 3 nanosheets synthesized by hydrothermal intercalation and exfoliation route. Applied Surface Science, 2014, 316, 341-347.	6.1	75
23	3D Binder-free MoSe2 Nanosheets/Carbon Cloth Electrodes for Efficient and Stable Hydrogen Evolution Prepared by Simple Electrophoresis Deposition Strategy. Scientific Reports, 2016, 6, 22516.	3.3	7 5
24	Hydrothermal synthesis of Ni ₃ S ₂ /graphene electrode and its application in a supercapacitor. RSC Advances, 2014, 4, 37278-37283.	3.6	71
25	One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceramics International, 2014, 40, 8189-8193.	4.8	60
26	Hydrogen Terminated Germanene for a Robust Selfâ€Powered Flexible Photoelectrochemical Photodetector. Small, 2020, 16, e2000283.	10.0	58
27	One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor. Ceramics International, 2015, 41, 4374-4380.	4.8	56
28	In-situ grafting of N-doped carbon nanotubes with Ni encapsulation onto MOF-derived hierarchical hybrids for efficient electrocatalytic hydrogen evolution. Carbon, 2020, 163, 178-185.	10.3	56
29	Direct Vapor Deposition Growth of 1T′ MoTe ₂ on Carbon Cloth for Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 3212-3219.	5.1	52
30	Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors. RSC Advances, 2014, 4, 13673.	3.6	48
31	Ordered platinum–bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 5214-5220.	10.3	48
32	SnS 2 nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance. Applied Surface Science, 2015, 355, 7-13.	6.1	47
33	Electrostatic properties of few-layer MoS2 films. AIP Advances, 2013, 3, .	1.3	46
34	A ferroelectric photocatalyst Ag ₁₀ Si ₄ O ₁₃ with visible-light photooxidation properties. Journal of Materials Chemistry A, 2016, 4, 10992-10999.	10.3	46
35	Laserâ€Generated Supranano Liquid Metal as Efficient Electron Mediator in Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e2001571.	21.0	46
36	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal–Support Interaction Boosts Photocatalysis. Small, 2020, 16, e2002356.	10.0	45

#	Article	IF	Citations
37	An architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries. Journal of Materials Chemistry, 2012, 22, 21513.	6.7	44
38	Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition. Journal of Applied Physics, 2014, 116, .	2.5	42
39	Ultraviolet, visible, and near infrared photoresponse properties of solution processed graphene oxide. Applied Surface Science, 2013, 266, 332-336.	6.1	39
40	Galliumâ€based liquid metals for lithiumâ€ion batteries. , 2022, 1, 354-372.		39
41	Hydrothermal exfoliated molybdenum disulfide nanosheets as anode material for lithium ion batteries. Journal of Energy Chemistry, 2014, 23, 207-212.	12.9	36
42	Selective Ferroelectric BiOI/Bi ₄ Ti ₃ O ₁₂ Heterostructures for Visible Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2019, 123, 517-525.	3.1	36
43	Single Cobalt Atom Anchored Black Phosphorous Nanosheets as an Effective Cocatalyst Promotes Photocatalysis. ChemCatChem, 2020, 12, 3870-3879.	3.7	34
44	Construction of 2D lateral pseudoheterostructures by strain engineering. 2D Materials, 2017, 4, 025102.	4.4	31
45	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 2019, 7, 13629-13634.	10.3	30
46	General Programmable Growth of Hybrid Core–Shell Nanostructures with Liquid Metal Nanodroplets. Advanced Materials, 2021, 33, e2008024.	21.0	28
47	One-step hydrothermal fabrication and enhancement of the photocatalytic performance of CdMoO4/CdS hybrid materials. RSC Advances, 2014, 4, 8772.	3.6	27
48	Graphene-supported flocculent-like TiO2 nanostructures for enhanced photoelectrochemical activity and photodegradation performance. Ceramics International, 2015, 41, 7471-7477.	4.8	26
49	Atomic Structural Evolution of Singleâ€Layer Pt Clusters as Efficient Electrocatalysts. Small, 2021, 17, e2100732.	10.0	26
50	Growth and surface potential characterization of Bi2Te3 nanoplates. AIP Advances, 2012, 2, .	1.3	25
51	Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi ₄ (SiO ₄) ₃ /Bi ₂ SiO ₅ nanostructures. Dalton Transactions, 2017, 46, 15582-15588.	3.3	25
52	The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO ₄ â€based resistive switching memory. InformaÄnÃ-Materiály, 2020, 2, 960-967.	17.3	21
53	Wearable Piezoelectric Nanogenerators Based on Core–Shell Ga-PZT@GaO _{<i>x</i>} Nanorod-Enabled P(VDF-TrFE) Composites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 7990-8000.	8.0	21
54	Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface. Materials Today Energy, 2020, 16, 100401.	4.7	17

#	Article	IF	CITATIONS
55	Morphology engineering of atomic layer defect-rich CoSe ₂ nanosheets for highly selective electrosynthesis of hydrogen peroxide. Journal of Materials Chemistry A, 2021, 9, 21340-21346.	10.3	16
56	In-situ investigation of graphene oxide under UV irradiation: Evolution of work function. AIP Advances, $2015, 5, .$	1.3	14
57	New monatomic layer clusters for advanced catalysis materials. Science China Materials, 2019, 62, 149-153.	6.3	12
58	Rational design of two-dimensional hybrid Co/N-doped carbon nanosheet arrays for efficient bi-functional electrocatalysis. Sustainable Energy and Fuels, 2019, 3, 1757-1763.	4.9	11
59	Significant photoluminescence quenching and charge transfer in the MoS2/Bi2Te3 heterostructure. Journal of Physics and Chemistry of Solids, 2019, 128, 337-342.	4.0	11
60	Morphological alteration of anatase titania nanostructures depend on the amount of Na ion intercalation. Crystal Research and Technology, 2012, 47, 738-745.	1.3	10
61	Synthesis, characterization and electrostatic properties of WS2 nanostructures. AIP Advances, 2014, 4, .	1.3	9
62	Native Surface Oxides Featured Liquid Metals for Printable Self-Powered Photoelectrochemical Device. Frontiers in Chemistry, 2019, 7, 356.	3.6	6
63	Ultrafine multi-metallic carbide nanocrystals encased in a carbon matrix as durable electrocatalysts towards effective alkaline hydrogen evolution reaction. Materials Advances, 2021, 2, 336-344.	5.4	6
64	Room temperature liquid metals for flexible alkali metalâ€chalcogen batteries. Exploration, 2022, 2, .	11.0	5
65	2D Heterostructures: Monolayer Epitaxial Heterostructures for Selective Visibleâ€Lightâ€Driven Photocatalytic NO Oxidation (Adv. Funct. Mater. 15/2019). Advanced Functional Materials, 2019, 29, 1970100.	14.9	1