Giorgio Trinchieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/427286/publications.pdf

Version: 2024-02-01

308 papers 67,549 citations

125
h-index

253 g-index

317 all docs

317 docs citations

317 times ranked

52891 citing authors

#	Article	IF	CITATIONS
1	The gut–liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends in Cancer, 2022, 8, 583-597.	7.4	22
2	Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nature Medicine, 2022, 28, 545-556.	30.7	167
3	Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by <i>Mmp12</i> + macrophages. Journal of Experimental Medicine, 2022, 219, .	8.5	24
4	IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discovery, 2022, 12, 1960-1983.	9.4	14
5	Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain, Behavior, and Immunity, 2021, 91, 472-486.	4.1	59
6	Gut Microbiome Directs Hepatocytes to Recruit MDSCs and Promote Cholangiocarcinoma. Cancer Discovery, 2021, 11, 1248-1267.	9.4	117
7	Distinct contributions of cathelinâ€related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. Journal of Pathology, 2021, 253, 339-350.	4.5	10
8	Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nature Communications, 2021, 12, 101.	12.8	86
9	Infection trains the host for microbiota-enhanced resistance to pathogens. Cell, 2021, 184, 615-627.e17.	28.9	148
10	Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science, 2021, 371, 595-602.	12.6	746
11	Requirement of CRAMP for mouse macrophages to eliminate phagocytosed <i>E. coli </i> through an autophagy pathway. Journal of Cell Science, 2021, 134, .	2.0	6
12	Tristetraprolin expression by keratinocytes protects against skin carcinogenesis. JCI Insight, 2021, 6, .	5.0	7
13	Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nature Metabolism, 2021, 3, 1042-1057.	11.9	23
14	Gut bacteria enable prostate cancer growth. Science, 2021, 374, 154-155.	12.6	8
15	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	12.6	369
16	Attenuation of immuneâ€mediated bone marrow damage in conventionally housed mice. Molecular Carcinogenesis, 2020, 59, 237-245.	2.7	5
17	Can we harness the microbiota to enhance the efficacy of cancer immunotherapy?. Nature Reviews Immunology, 2020, 20, 522-528.	22.7	54
18	FAM3D is essential for colon homeostasis and host defense against inflammation associated carcinogenesis. Nature Communications, 2020, 11, 5912.	12.8	38

#	Article	IF	CITATIONS
19	The Great Debate at †Immunotherapy Bridge', Naples, December 5, 2019. , 2020, 8, e000921.		3
20	Human NK cells prime inflammatory DC precursors to induce Tc17 differentiation. Blood Advances, 2020, 4, 3990-4006.	5.2	12
21	Conventional Co-Housing Modulates Murine Gut Microbiota and Hematopoietic Gene Expression. International Journal of Molecular Sciences, 2020, 21, 6143.	4.1	10
22	Perspectives in melanoma: meeting report from the "Melanoma Bridge―(December 5th–7th, 2019,) Tj E	ГQq0 0 0 r 4.4	gBŢ /Overlocl
23	Microbial DNA signature in plasma enables cancer diagnosis. Nature Reviews Clinical Oncology, 2020, 17, 453-454.	27.6	5
24	TNF-shaped microbiota promotes cancer. Nature Cancer, 2020, 1, 667-669.	13.2	3
25	Requirements for the differentiation of innate T-bethigh memory-phenotype CD4+ T lymphocytes under steady state. Nature Communications, 2020, 11, 3366.	12.8	16
26	Microbiome as an Immunological Modifier. Methods in Molecular Biology, 2020, 2055, 595-638.	0.9	23
27	Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science, 2019, 365, .	12.6	360
28	Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1116-1127.	7.3	36
29	MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the Microbiota. Immunity, 2019, 51, 885-898.e7.	14.3	164
30	Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques. MBio, 2019, 10, .	4.1	29
31	The cancer microbiome. Nature Reviews Cancer, 2019, 19, 371-376.	28.4	153
32	T-Cell Deletion of MyD88 Connects IL17 and lîºBî¶ to RAS Oncogenesis. Molecular Cancer Research, 2019, 17, 1759-1773.	3.4	9
33	Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer. Immunity, 2019, 50, 166-180.e7.	14.3	114
34	Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response. Journal of Clinical Investigation, 2019, 129, 1314-1328.	8.2	28
35	Natural Killer Cells Detect a Tumor-Produced Growth Factor: A Vestige of Antiviral Resistance?. Trends in Immunology, 2018, 39, 357-358.	6.8	3
36	The Antimicrobial Peptide CRAMP Is Essential for Colon Homeostasis by Maintaining Microbiota Balance. Journal of Immunology, 2018, 200, 2174-2185.	0.8	56

#	Article	IF	CITATIONS
37	Anti-PD1 in the wonder-gut-land. Cell Research, 2018, 28, 263-264.	12.0	25
38	Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell, 2018, 172, 784-796.e18.	28.9	323
39	MAVS deficiency induces gut dysbiotic microbiota conferring a proallergic phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10404-10409.	7.1	14
40	Cutting Edge: Quantitative Determination of CD40L Threshold for IL-12 and IL-23 Production from Dendritic Cells. Journal of Immunology, 2018, 201, 2879-2884.	0.8	9
41	A dysbiotic microbiome triggers T $<$ sub $>$ H $<$ /sub $>$ 17 cells to mediate oral mucosal immunopathology in mice and humans. Science Translational Medicine, 2018, 10, .	12.4	249
42	An Interleukin-23-Interleukin-22 Axis Regulates Intestinal Microbial Homeostasis to Protect from Diet-Induced Atherosclerosis. Immunity, 2018, 49, 943-957.e9.	14.3	118
43	Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018, 360, .	12.6	931
44	Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunology, 2018, 11, 1219-1229.	6.0	33
45	The interplay between neutrophils and microbiota in cancer. Journal of Leukocyte Biology, 2018, 104, 701-715.	3.3	10
46	Interaction between the microbiome and TP53 in human lung cancer. Genome Biology, 2018, 19, 123.	8.8	247
47	The innate immune receptor TREM-1 promotes liver injury and fibrosis. Journal of Clinical Investigation, 2018, 128, 4870-4883.	8.2	70
48	Microbes and Cancer. Annual Review of Immunology, 2017, 35, 199-228.	21.8	202
49	On-going Mechanical Damage from Mastication Drives Homeostatic Th17 Cell Responses at the Oral Barrier. Immunity, 2017, 46, 133-147.	14.3	178
50	Workshop Report: Modulation of Antitumor Immune Responses by Dietary and Microbial Metabolites. Journal of the National Cancer Institute, 2017, 109, .	6.3	7
51	Systematic evaluation of immune regulation and modulation. , 2017, 5, 21.		20
52	Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 2017, 17, 271-285.	28.4	699
53	Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell, 2017, 171, 1015-1028.e13.	28.9	603
54	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5, 71.	11.1	117

#	Article	IF	Citations
55	The role of microbiota in cancer therapy. Current Opinion in Immunology, 2016, 39, 75-81.	5 . 5	74
56	Systemic Inflammation in Cachexia – Is Tumor Cytokine Expression Profile the Culprit?. Frontiers in Immunology, 2015, 6, 629.	4.8	70
57	Bone-Marrow-Resident NK Cells Prime Monocytes for Regulatory Function during Infection. Immunity, 2015, 42, 1130-1142.	14.3	199
58	Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. Nucleic Acids Research, 2015, 43, e82-e82.	14.5	61
59	Microbiota Modulation of Myeloid Cells in Cancer Therapy. Cancer Immunology Research, 2015, 3, 103-109.	3.4	31
60	Cancer Immunity: Lessons From Infectious Diseases. Journal of Infectious Diseases, 2015, 212, S67-S73.	4.0	35
61	Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells. Cancer Research, 2015, 75, 3456-3465.	0.9	133
62	Proteus mirabilis: The Enemy Within. Immunity, 2015, 42, 602-604.	14.3	12
63	NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay. Cancer Research, 2015, 75, 2788-2799.	0.9	43
64	Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell, 2015, 163, 354-366.	28.9	230
65	The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. European Journal of Immunology, 2015, 45, 17-31.	2.9	229
66	Interleukin-1 and Interferon-γ Orchestrate β-Glucan-Activated Human Dendritic Cell Programming via ÎκB-ζ Modulation. PLoS ONE, 2014, 9, e114516.	2.5	14
67	Why should we need the gut microbiota to respond to cancer therapies?. Oncolmmunology, 2014, 3, e27574.	4.6	17
68	Critical role for CX3CR1+ mononuclear phagocytes in intestinal homeostasis. Journal of Experimental Medicine, 2014, 211, 1500-1501.	8.5	4
69	Cell Depletion in Mice That Express Diphtheria Toxin Receptor under the Control of SiglecH Encompasses More Than Plasmacytoid Dendritic Cells. Journal of Immunology, 2014, 192, 4409-4416.	0.8	44
70	Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses. Cell, 2014, 157, 499-513.	28.9	424
71	A new VEGF connection between two old neighbors. Nature Immunology, 2014, 15, 8-9.	14.5	3
72	Differential Responses of Plasmacytoid Dendritic Cells to Influenza Virus and Distinct Viral Pathogens. Journal of Virology, 2014, 88, 10758-10766.	3.4	28

#	Article	IF	Citations
73	Host Immune Response to Infection and Cancer: Unexpected Commonalities. Cell Host and Microbe, 2014, 15, 295-305.	11.0	134
74	MyD88 and its divergent toll in carcinogenesis. Trends in Immunology, 2013, 34, 379-389.	6.8	75
75	Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment. Science, 2013, 342, 967-970.	12.6	1,715
76	Intraluminal Containment of Commensal Outgrowth in the Gut during Infection-Induced Dysbiosis. Cell Host and Microbe, 2013, 14, 318-328.	11.0	142
77	Molecular Pathways: Toll-like Receptors in the Tumor Microenvironmentâ€"Poor Prognosis or New Therapeutic Opportunity. Clinical Cancer Research, 2013, 19, 1340-1346.	7.0	124
78	The Pivotal Role of IKK \hat{l}_{\pm} in the Development of Spontaneous Lung Squamous Cell Carcinomas. Cancer Cell, 2013, 23, 527-540.	16.8	100
79	The Human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. Journal of Experimental Medicine, 2013, 210, 1369-1387.	8.5	145
80	LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN- \hat{l}^3 Production by Repressing \hat{l}^2 -Catenin Activation in Dendritic Cells. PLoS Pathogens, 2013, 9, e1003357.	4.7	14
81	TGF-Î ² Signaling in Myeloid Cells Is Required for Tumor Metastasis. Cancer Discovery, 2013, 3, 936-951.	9.4	134
82	Cord Factor and Peptidoglycan Recapitulate the Th17-Promoting Adjuvant Activity of Mycobacteria through Mincle/CARD9 Signaling and the Inflammasome. Journal of Immunology, 2013, 190, 5722-5730.	0.8	112
83	Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. Journal of Clinical Investigation, 2013, 123, 4859-4874.	8.2	138
84	The price of immunity. Nature Immunology, 2012, 13, 932-938.	14.5	144
85	IL-1R–MyD88 signaling in keratinocyte transformation and carcinogenesis. Journal of Experimental Medicine, 2012, 209, 1689-1702.	8.5	99
86	NK Cell-Derived Interferon- \hat{l}^3 Orchestrates Cellular Dynamics and the Differentiation of Monocytes into Dendritic Cells at the Site of Infection. Immunity, 2012, 36, 1047-1059.	14.3	239
87	Lymphocyte Choriomeningitis Virus Plays Hide-and-Seek with Type 1 Interferon. Cell Host and Microbe, 2012, 11, 553-555.	11.0	2
88	Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature, 2012, 491, 254-258.	27.8	1,088
89	The Proinflammatory Myeloid Cell Receptor TREM-1 Controls Kupffer Cell Activation and Development of Hepatocellular Carcinoma. Cancer Research, 2012, 72, 3977-3986.	0.9	199
90	Cancer classification using the Immunoscore: a worldwide task force. Journal of Translational Medicine, 2012, 10, 205.	4.4	676

#	Article	IF	CITATIONS
91	Isolation and Optimization of Murine IL-10 Receptor Blocking Oligonucleotide Aptamers Using High-throughput Sequencing. Molecular Therapy, 2012, 20, 1242-1250.	8.2	107
92	The immune score as a new possible approach for the classification of cancer. Journal of Translational Medicine, 2012, $10, 1$.	4.4	656
93	Compartmentalized Control of Skin Immunity by Resident Commensals. Science, 2012, 337, 1115-1119.	12.6	895
94	Cancer and Inflammation: An Old Intuition with Rapidly Evolving New Concepts. Annual Review of Immunology, 2012, 30, 677-706.	21.8	433
95	CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood, 2011, 118, 5130-5140.	1.4	42
96	Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nature Reviews Immunology, 2011, 11, 9-20.	22.7	345
97	Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system?. Nature Reviews Immunology, 2011, 11, 558-565.	22.7	109
98	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	22.7	95
99	Interferon-Î ³ links ultraviolet radiation to melanomagenesis in mice. Nature, 2011, 469, 548-553.	27.8	264
100	At 17, In-10's Passion Need Not Inflame. Immunity, 2011, 34, 460-462.	14.3	4
101	Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clinical Cancer Research, 2011, 17, 3064-3076.	7.0	108
102	Interleukin-2 inhibits FMS-like tyrosine kinase 3 receptor ligand (flt3L)-dependent development and function of conventional and plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2408-2413.	7.1	26
103	<i>Mycobacterium tuberculosis</i> Triggers Host Type I IFN Signaling To Regulate IL- $1\hat{l}^2$ Production in Human Macrophages. Journal of Immunology, 2011, 187, 2540-2547.	0.8	229
104	IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. Journal of Clinical Investigation, 2011, 121, 4746-4757.	8.2	283
105	Innate inflammation and cancer: Is it time for cancer prevention?. F1000 Medicine Reports, 2011, 3, 11.	2.9	26
106	Turning on and off the Immunological Switch: Immune Response Polarization and Its Control by IL-10 and STAT3., 2011,, 27-55.		0
107	National Institutes of Health Center for Human Immunology Conference, September 2009. Annals of the New York Academy of Sciences, 2010, 1200, E1-23.	3.8	12
108	TLR3 and Rig-Like Receptor on Myeloid Dendritic Cells and Rig-Like Receptor on Human NK Cells Are Both Mandatory for Production of IFN-Î ³ in Response to Double-Stranded RNA. Journal of Immunology, 2010, 185, 2080-2088.	0.8	88

#	Article	IF	Citations
109	Oncogene-Driven Intrinsic Inflammation Induces Leukocyte Production of Tumor Necrosis Factor That Critically Contributes to Mammary Carcinogenesis. Cancer Research, 2010, 70, 7764-7775.	0.9	31
110	Cancer and Inflammation: Promise for Biologic Therapy. Journal of Immunotherapy, 2010, 33, 335-351.	2.4	293
111	MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. Journal of Experimental Medicine, 2010, 207, 1625-1636.	8.5	382
112	Tumor-Specific CD8+ T Cells Expressing Interleukin-12 Eradicate Established Cancers in Lymphodepleted Hosts. Cancer Research, 2010, 70, 6725-6734.	0.9	227
113	Type I interferon: friend or foe?. Journal of Experimental Medicine, 2010, 207, 2053-2063.	8.5	719
114	Immunologic and Therapeutic Synergy of IL-27 and IL-2: Enhancement of T Cell Sensitization, Tumor-Specific CTL Reactivity and Complete Regression of Disseminated Neuroblastoma Metastases in the Liver and Bone Marrow. Journal of Immunology, 2009, 182, 4328-4338.	0.8	90
115	Reinforcing Suppression Using Regulators: A New Link between STAT3, IL-23, and Tregs in Tumor Immunosuppression. Cancer Cell, 2009, 15, 81-83.	16.8	18
116	Innate resistance and inflammation. Current Opinion in Immunology, 2009, 21, 1-2.	5.5	42
117	CSF-1R, DAP12 and β-catenin: a ménage à trois. Nature Immunology, 2009, 10, 681-683.	14.5	15
118	Double stranded RNA tricks melanoma cells into committing suicide. Pigment Cell and Melanoma Research, 2009, 22, 705-706.	3.3	1
119	Regulation of interleukinâ€12/interleukinâ€23 production and the Tâ€helper 17 response in humans. Immunological Reviews, 2008, 226, 112-131.	6.0	192
120	A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers". Journal of Translational Medicine, 2008, 6, 81.	4.4	45
121	Plasmacytoid Dendritic Cells Mediate Oral Tolerance. Immunity, 2008, 29, 464-475.	14.3	333
122	Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. Journal of Experimental Medicine, 2008, 205, 1447-1461.	8.5	247
123	The Birth of a Cell Type. Journal of Immunology, 2007, 178, 3-4.	0.8	7
124	TAP-1 indirectly regulates CD4+ T cell priming in <i>Toxoplasma gondii</i> infection by controlling NK cell IFN-1 ³ production. Journal of Experimental Medicine, 2007, 204, 2591-2602.	8.5	77
125	Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8047-8052.	7.1	69
126	Interleukin-10 production by effector T cells: Th1 cells show self control. Journal of Experimental Medicine, 2007, 204, 239-243.	8.5	317

#	Article	IF	Citations
127	IL-10 or not IL-10: that is the question. Nature Immunology, 2007, 8, 1281-1283.	14.5	76
128	Cooperation of Toll-like receptor signals in innate immune defence. Nature Reviews Immunology, 2007, 7, 179-190.	22.7	1,174
129	Ikaros is required for plasmacytoid dendritic cell differentiation. Blood, 2006, 108, 4025-4034.	1.4	115
130	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology, 2006, 7, 652-662.	14.5	589
131	Macrophages and Myeloid Dendritic Cells, but Not Plasmacytoid Dendritic Cells, Produce IL-10 in Response to MyD88- and TRIF-Dependent TLR Signals, and TLR-Independent Signals. Journal of Immunology, 2006, 177, 7551-7558.	0.8	263
132	Ligation of the FcRÎ ³ Chain-Associated Human Osteoclast-Associated Receptor Enhances the Proinflammatory Responses of Human Monocytes and Neutrophils. Journal of Immunology, 2006, 176, 3149-3156.	0.8	46
133	Fc receptor \hat{l}^3 -chain activation via hOSCAR induces survival and maturation of dendritic cells and modulates Toll-like receptor responses. Blood, 2005, 105, 3623-3632.	1.4	37
134	Cytokine receptor gene plays antioncogene. Blood, 2005, 106, 3684-3685.	1.4	0
135	Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. Journal of Neurochemistry, 2005, 95, 331-340.	3.9	119
136	Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nature Immunology, 2005, 6, 1011-1019.	14.5	241
137	MyD88-Dependent and -Independent Murine Cytomegalovirus Sensing for IFN-α Release and Initiation of Immune Responses In Vivo. Journal of Immunology, 2005, 175, 6723-6732.	0.8	186
138	Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. International Immunology, 2005, 17, 1429-1438.	4.0	74
139	Type I interferon dependence of plasmacytoid dendritic cell activation and migration. Journal of Experimental Medicine, 2005, 201, 1157-1167.	8.5	307
140	Redirecting i>In vivo i>Elicited Tumor Infiltrating Macrophages and Dendritic Cells towards Tumor Rejection. Cancer Research, 2005, 65, 3437-3446.	0.9	498
141	Recognition of Double-stranded RNA by Human Toll-like Receptor 3 and Downstream Receptor Signaling Requires Multimerization and an Acidic pH. Journal of Biological Chemistry, 2005, 280, 38133-38145.	3.4	225
142	CD85j (Leukocyte Ig-Like Receptor-1/Ig-Like Transcript 2) Inhibits Human Osteoclast-Associated Receptor-Mediated Activation of Human Dendritic Cells. Journal of Immunology, 2005, 174, 6757-6763.	0.8	46
143	The Reciprocal Interaction of NK Cells with Plasmacytoid or Myeloid Dendritic Cells Profoundly Affects Innate Resistance Functions. Journal of Immunology, 2005, 174, 727-734.	0.8	343
144	Human TLR10 Is a Functional Receptor, Expressed by B Cells and Plasmacytoid Dendritic Cells, Which Activates Gene Transcription through MyD88. Journal of Immunology, 2005, 174, 2942-2950.	0.8	352

#	Article	IF	CITATIONS
145	Distinct and Overlapping Roles of Interleukin-10 and CD25+ Regulatory T Cells in the Inhibition of Antitumor CD8 T-Cell Responses. Cancer Research, 2005, 65, 8479-8486.	0.9	66
146	Toll-like Receptor Signaling Stimulates Cell Cycle Entry and Progression in Fibroblasts. Journal of Biological Chemistry, 2005, 280, 20620-20627.	3.4	72
147	Production of type I interferons. Journal of Experimental Medicine, 2005, 202, 461-465.	8.5	260
148	Virus overrides the propensity of human CD40L-activated plasmacytoid dendritic cells to produce Th2 mediators through synergistic induction of IFN- \hat{I}^3 and Th1 chemokine production. Journal of Leukocyte Biology, 2005, 78, 954-966.	3.3	27
149	A type I interferon autocrine–paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. Journal of Experimental Medicine, 2005, 201, 1435-1446.	8.5	481
150	Murine Plasmacytoid Dendritic Cells Initiate the Immunosuppressive Pathway of Tryptophan Catabolism in Response to CD200 Receptor Engagement. Journal of Immunology, 2004, 173, 3748-3754.	0.8	203
151	Interleukin-10 in viral diseases and cancer: exiting the labyrinth?. Immunological Reviews, 2004, 202, 223-236.	6.0	98
152	Cytokines and cytokine receptors. Immunological Reviews, 2004, 202, 5-7.	6.0	13
153	Plasmacytoid dendritic cells in immunity. Nature Immunology, 2004, 5, 1219-1226.	14.5	1,432
154	Are dendritic cells afraid of commitment?. Nature Immunology, 2004, 5, 1206-1208.	14.5	25
155	OSCAR is an $FcR\hat{I}^3$ -associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells. Blood, 2004, 104, 1386-1395.	1.4	91
156	The choices of a natural killer. Nature Immunology, 2003, 4, 509-510.	14.5	20
157	Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology, 2003, 3, 133-146.	22.7	3,274
158	The IL-12 Family of Heterodimeric Cytokines. Immunity, 2003, 19, 641-644.	14.3	840
159	The Inducible CXCR3 Ligands Control Plasmacytoid Dendritic Cell Responsiveness to the Constitutive Chemokine Stromal Cell–derived Factor 1 (SDF-1)/CXCL12. Journal of Experimental Medicine, 2003, 198, 823-830.	8.5	216
160	Flexibility of Mouse Classical and Plasmacytoid-derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development. Journal of Experimental Medicine, 2003, 197, 101-109.	8.5	502
161	Mouse Strain Differences in Plasmacytoid Dendritic Cell Frequency and Function Revealed by a Novel Monoclonal Antibody. Journal of Immunology, 2003, 171, 6466-6477.	0.8	334
162	Persistent Decreases in Blood Plasmacytoid Dendritic Cell Number and Function Despite Effective Highly Active Antiretroviral Therapy and Increased Blood Myeloid Dendritic Cells in HIV-Infected Individuals. Journal of Immunology, 2002, 168, 4796-4801.	0.8	309

#	Article	IF	Citations
163	Reciprocal Activating Interaction between Natural Killer Cells and Dendritic Cells. Journal of Experimental Medicine, 2002, 195, 327-333.	8.5	921
164	Interferon $\hat{l}\pm\hat{l}^2$ and Interleukin 12 Responses to Viral Infections. Journal of Experimental Medicine, 2002, 195, 517-528.	8.5	421
165	Reversal of Tumor-induced Dendritic Cell Paralysis by CpG Immunostimulatory Oligonucleotide and Anti–Interleukin 10 Receptor Antibody. Journal of Experimental Medicine, 2002, 196, 541-549.	8.5	322
166	Effect of the V3 Loop Deletion of Envelope Glycoprotein on Cellular Responses and Protection against Challenge with Recombinant Vaccinia Virus Expressing gp160 of Primary Human Immunodeficiency Virus Type 1 Isolates. Journal of Virology, 2002, 76, 4222-4232.	3.4	18
167	The Development of Murine Plasmacytoid Dendritic Cell Precursors Is Differentially Regulated by FLT3-ligand and Granulocyte/Macrophage Colony-Stimulating Factor. Journal of Experimental Medicine, 2002, 195, 953-958.	8.5	504
168	Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine and Growth Factor Reviews, 2002, 13, 155-168.	7.2	627
169	Introduction: Cytokines and Cancer. Cytokine and Growth Factor Reviews, 2002, 13, 93-94.	7.2	4
170	Origin and filiation of human plasmacytoid dendritic cells. Human Immunology, 2002, 63, 1081-1093.	2.4	51
171	Tumour escape from immune surveillance through dendritic cell inactivation. Seminars in Cancer Biology, 2002, 12, 33-42.	9.6	205
172	Regulation of interleukin-12 production in antigen-presenting cells. Advances in Immunology, 2001, 79, 55-92.	2.2	180
173	Modulation of Susceptibility and Resistance to an Autoimmune Model of Multiple Sclerosis in Prototypically Susceptible and Resistant Strains by Neutralization of Interleukin-12 and Interleukin-4, Respectively. Clinical Immunology, 2001, 98, 23-30.	3.2	44
174	Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. European Journal of Immunology, 2001, 31, 2026-2034.	2.9	77
175	Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunology, 2001, 2, 1144-1150.	14.5	912
176	Chlamydia pneumoniae Exacerbates Aortic Inflammatory Foci Caused by Murine Cytomegalovirus Infection in Normocholesterolemic Mice. Vaccine Journal, 2001, 8, 1263-1266.	2.6	16
177	Regulatory Role of T Cells Producing both Interferon \hat{I}^3 and Interleukin 10 in Persistent Infection. Journal of Experimental Medicine, 2001, 194, F53-F57.	8.5	148
178	IL-12 Suppression During Experimental Endotoxin Tolerance: Dendritic Cell Loss and Macrophage Hyporesponsiveness. Journal of Immunology, 2001, 166, 7504-7513.	0.8	132
179	Suppression of IL-12 Transcription in Macrophages Following Fcl ³ Receptor Ligation. Journal of Immunology, 2001, 166, 4498-4506.	0.8	92
180	Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. European Journal of Immunology, 2001, 31, 2026-2034.	2.9	1

#	Article	IF	Citations
181	Human thymus contains IFN-α–producing CD11c–, myeloid CD11c+, and mature interdigitating dendritic cells. Journal of Clinical Investigation, 2001, 107, 835-844.	8.2	172
182	Cutting Edge: Ectopic Expression of the IL-12 Receptor-Î ² 2 in Developing and Committed Th2 Cells Does Not Affect the Production of IL-4 or Induce the Production of IFN-Î ³ . Journal of Immunology, 2000, 164, 2861-2865.	0.8	45
183	The suppressive effect of TGF- \hat{l}^2 on IL-12-mediated immune modulation specific to a peptide Ac1-11 of myelin basic protein (MBP): a mechanism involved in inhibition of both IL-12 receptor \hat{l}^21 and \hat{l}^22 . Journal of Neuroimmunology, 2000, 108, 53-63.	2.3	17
184	Leishmania sp: Comparative Study with Toxoplasma gondii and Trypanosoma cruzi in Their Ability to Initialize IL-12 and IFN- \hat{l}^3 Synthesis. Experimental Parasitology, 2000, 95, 96-105.	1.2	36
185	Oxidized Low Density Lipoprotein Inhibits Interleukin-12 Production in Lipopolysaccharide-activated Mouse Macrophages via Direct Interactions between Peroxisome Proliferator-activated Receptor-γ and Nuclear Factor-κB. Journal of Biological Chemistry, 2000, 275, 32681-32687.	3.4	320
186	Inhibition of IL-12 Production in Human Monocyte-Derived Macrophages by TNF. Journal of Immunology, 2000, 164, 1722-1729.	0.8	95
187	Biosynthesis and Posttranslational Regulation of Human IL-12. Journal of Immunology, 2000, 164, 4752-4761.	0.8	96
188	<i>Chlamydiapneumoniae</i> Inhibits Apoptosis in Human Peripheral Blood Mononuclear Cells Through Induction of IL-10. Journal of Immunology, 2000, 164, 5522-5529.	0.8	122
189	Roles of Interleukin-12 and Gamma Interferon in Murine Chlamydia pneumoniae Infection. Infection and Immunity, 2000, 68, 2245-2253.	2.2	56
190	An IFN- \hat{I}^3 -Inducible Transcription Factor, IFN Consensus Sequence Binding Protein (ICSBP), Stimulates IL-12 p40 Expression in Macrophages. Journal of Immunology, 2000, 165, 271-279.	0.8	182
191	Expression and Function of IL-12 and IL-18 Receptors on Human Tonsillar B Cells. Journal of Immunology, 2000, 165, 6880-6888.	0.8	103
192	Association between HIV-specific T helper responses and CTL activities in pediatric AIDS. European Journal of Immunology, 2000, 30, 117-127.	2.9	4
193	Downregulation of Interleukin-12 (IL-12) Responsiveness in Human T Cells by Transforming Growth Factor-Î ² : Relationship With IL-12 Signaling. Blood, 1999, 93, 1448-1455.	1.4	56
194	The Interleukin-12–Mediated Pathway of Immune Events Is Dysfunctional in Human Immunodeficiency Virus–Infected Individuals. Blood, 1999, 94, 1003-1011.	1.4	91
195	Retinoids Synergize with Interleukin-2 to Augment IFN-gamma and Interleukin-12 Production by Human Peripheral Blood Mononuclear Cells. Journal of Interferon and Cytokine Research, 1999, 19, 407-415.	1.2	46
196	Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48. European Journal of Immunology, 1999, 29, 3466-3477.	2.9	82
197	Regulation of Human IL-18 mRNA Expression. Clinical Immunology, 1999, 90, 15-21.	3.2	62
198	IL-12 reverses the suppressive effect of the CD40 ligand blockade on experimental autoimmune encephalomyelitis (EAE). Journal of the Neurological Sciences, 1999, 171, 60-64.	0.6	25

#	Article	IF	CITATIONS
199	Retinoids Inhibit Interleukin-12 Production in Macrophages through Physical Associations of Retinoid X Receptor and NFîºB. Journal of Biological Chemistry, 1999, 274, 7674-7680.	3.4	222
200	CD4+ T Cell Clones Producing both Interferon- \hat{l}^3 and Interleukin-10 Predominate in Bronchoalveolar Lavages of Active Pulmonary Tuberculosis Patients. Clinical Immunology, 1999, 92, 224-234.	3.2	161
201	Downregulation of Interleukin-12 (IL-12) Responsiveness in Human T Cells by Transforming Growth Factor-Î ² : Relationship With IL-12 Signaling. Blood, 1999, 93, 1448-1455.	1.4	7
202	Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. Arthritis and Rheumatism, 1998, 41, 838-844.	6.7	217
203	The role of IL-12 in the maintenance of an established Th1 immune response in experimental leishmaniasis. European Journal of Immunology, 1998, 28, 2227-2233.	2.9	51
204	Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. European Journal of Immunology, 1998, 28, 3128-3136.	2.9	129
205	Immunobiology of Interleukin-12. Immunologic Research, 1998, 17, 269-278.	2.9	181
206	Interleukin 12 Breaks Ultraviolet Light Induced Immunosuppression by Affecting CD8+ Rather Than CD4+T Cells. Journal of Investigative Dermatology, 1998, 110, 272-276.	0.7	28
207	Cultured human monocytes release proinflammatory cytokines in response to myelin basic protein. Neuroscience Letters, 1998, 252, 151-154.	2.1	6
208	Tumor Cell Responses to IFN \hat{I}^3 Affect Tumorigenicity and Response to IL-12 Therapy and Antiangiogenesis. Immunity, 1998, 9, 25-34.	14.3	288
209	Interleukin-12: A Cytokine at the Interface of Inflammation and Immunity. Advances in Immunology, 1998, 70, 83-243.	2.2	663
210	Immune Suppression by Recombinant Interleukin (rIL)-12 Involves Interferon \hat{I}^3 Induction of Nitric Oxide Synthase 2 (iNOS) Activity: Inhibitors of NO Generation Reveal the Extent of rIL-12 Vaccine Adjuvant Effect. Journal of Experimental Medicine, 1998, 188, 1603-1610.	8.5	117
211	Proinflammatory and Immunoregulatory Functions of Interleukin-12. International Reviews of Immunology, 1998, 16, 365-396.	3.3	262
212	Synergistic Regulation of the Human Interleukin-12 p40 Promoter by NFκB and Ets Transcription Factors in Epstein-Barr Virus-transformed B Cells and Macrophages. Journal of Biological Chemistry, 1998, 273, 6431-6438.	3.4	91
213	Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. European Journal of Immunology, 1998, 28, 3128-3136.	2.9	4
214	Differential Regulation of the Interleukin-12 Receptor during the Innate Immune Response to <i>Leishmania major</i> . Infection and Immunity, 1998, 66, 3818-3824.	2.2	65
215	Role of Interleukin-12 in Primary Influenza Virus Infection. Journal of Virology, 1998, 72, 4825-4831.	3.4	152
216	Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis Journal of Clinical Investigation, 1998, 101, 1441-1452.	8.2	361

#	Article	IF	Citations
217	Identification and Characterization of a Novel Ets-2-related Nuclear Complex Implicated in the Activation of the Human Interleukin-12 p40 Gene Promoter. Journal of Biological Chemistry, 1997, 272, 10389-10395.	3.4	133
218	Function and clinical use of interleukin-12. Current Opinion in Hematology, 1997, 4, 59-66.	2.5	55
219	IMMUNOMODULATION BYQUILLAJA SAPONARIAADJUVANT FORMULATIONS: IN VIVO STIMULATION OF INTERLEUKIN 12 AND ITS EFFECTS ON THE ANTIBODY RESPONSE. Cytokine, 1997, 9, 73-82.	3.2	46
220	Interleukin-12: An Immunoregulatory Cytokine Produced by B Cells and Antigen-Presenting Cells. Methods, 1997, 11, 116-127.	3.8	45
221	IL-12 as an adjuvant for cell-mediated immunity. Seminars in Immunology, 1997, 9, 285-291.	5.6	79
222	Establishment of an IL-12-responsive T cell clone: its characterization and utilization in the quantitation of IL-12 activity. Journal of Leukocyte Biology, 1997, 61, 346-352.	3.3	33
223	Regulation of T cell-dependent and -independent IL-12 production by the three Th2-type cytokines IL-10, IL-6, and IL-4. Journal of Leukocyte Biology, 1997, 61, 80-87.	3.3	79
224	Calcitonin Gene-Related Peptide Inhibits Proliferation and Antigen Presentation by Human Peripheral Blood Mononuclear Cells: Effects on B7, Interleukin 10, and Interleukin12. Journal of Investigative Dermatology, 1997, 108, 43-48.	0.7	102
225	Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-γ). Current Opinion in Immunology, 1997, 9, 17-23.	5.5	313
226	Role of Interleukin-12 in Human Th1 Response. Chemical Immunology and Allergy, 1996, 63, 14-29.	1.7	16
227	Regulation of Interleukin-12 Production. Annals of the New York Academy of Sciences, 1996, 795, 13-25.	3.8	33
228	A Novel ets-2-Related Nuclear Factor Is Involved in Transcriptional Activation of the Human Interleukin-12 p40 Gene Promoter in Response to Interferon-? and LPS Stimulation of Monocytic Cells. Annals of the New York Academy of Sciences, 1996, 795, 357-360.	3.8	19
229	Does Interleukin-12 Play a Role in the Viral Immune Response?. Annals of the New York Academy of Sciences, 1996, 795, 366-367.	3.8	7
230	Leishmania major Metacyclogenesis Modulates Ability to Induce IL-12. Annals of the New York Academy of Sciences, 1996, 795, 400-402.	3.8	5
231	Structure of the Mouse IL-12R01 Chain and Regulation of Its Expression in BCG/LPS-Treated Mice. Annals of the New York Academy of Sciences, 1996, 795, 413-415.	3.8	13
232	Mechanism of the Induction of Anti-Tumor Immunity by B7.1 and Interleukin-12. Annals of the New York Academy of Sciences, 1996, 795, 429-433.	3.8	4
233	Acute induction and priming for cytokine production in lymphocytes. Cytokine and Growth Factor Reviews, 1996, 7, 123-132.	7.2	30
234	Mechanism of Suppression of Cell-Mediated Immunity by Measles Virus. Science, 1996, 273, 228-231.	12.6	546

#	Article	IF	Citations
235	Immunoregulation by interleukin-12. Journal of Leukocyte Biology, 1996, 59, 505-511.	3.3	267
236	Enhancement of Porcine Natural Killer Cell Activity by Recombinant Human and Murine IL-12. Cellular Immunology, 1996, 172, 29-34.	3.0	17
237	Interleukinâ \in 12 is produced by dendritic cells and mediates T helper 1 development as well as interferonâ \in 13 production by T helper 1 cells. European Journal of Immunology, 1996, 26, 659-668.	2.9	624
238	Interleukin-12 Prevents Ultraviolet B-Induced Local Immunosuppression and Overcomes UVB-Induced Tolerance. Journal of Investigative Dermatology, 1996, 106, 1187-1191.	0.7	125
239	The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells Journal of Experimental Medicine, 1996, 183, 147-157.	8.5	616
240	Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-gamma and interleukin-10 Journal of Experimental Medicine, 1996, 183, 2559-2569.	8.5	293
241	Differential production of IL-12 in BALB/c and DBA/2 mice controls IL-4 versus IFN-Î ³ synthesis in primed CD4 lymphocytes. International Immunology, 1996, 8, 1511-1520.	4.0	34
242	Interleukin-12 production by human polymorphonuclear leukocytes. European Journal of Immunology, 1995, 25, 1-5.	2.9	266
243	CD4 T cells inhibitin vivo the CD8-mediated immune response against murine colon carcinoma cells transduced with interleukin-12 genes. European Journal of Immunology, 1995, 25, 137-146.	2.9	120
244	Interleukin-12 is required for interferon- $\hat{1}^3$ production and lethality in lipopolysaccharide-induced shock in mice. European Journal of Immunology, 1995, 25, 672-676.	2.9	478
245	Recombinant IL–12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nature Medicine, 1995, 1, 890-893.	30.7	262
246	The role of natural killer cells in hostâ€"parasite interactions. Current Opinion in Immunology, 1995, 7, 34-40.	5.5	193
247	Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production Journal of Experimental Medicine, 1995, 181, 537-546.	8.5	345
248	Natural killer cells wear different hats: effector cells of innate resistance and regulatory cells of adaptive immunity and of hematopoiesis. Seminars in Immunology, 1995, 7, 83-88.	5.6	133
249	Interleukin-12. BioDrugs, 1995, 3, 262-270.	0.7	1
250	Interleukin-12: A Proinflammatory Cytokine with Immunoregulatory Functions that Bridge Innate Resistance and Antigen-Specific Adaptive Immunity. Annual Review of Immunology, 1995, 13, 251-276.	21.8	2,256
251	The Two Faces of Interleukin 12: A Proâ€inflammatory Cytokine and a Key Immunoregulatory Molecule Produced by Antigenâ€Presenting Cells. Novartis Foundation Symposium, 1995, 195, 203-220.	1.1	14
252	Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones Journal of Experimental Medicine, 1994, 179, 1273-1283.	8.5	427

#	Article	IF	CITATIONS
253	B7 and interleukin 12 cooperate for proliferation and interferon gamma production by mouse T helper clones that are unresponsive to B7 costimulation Journal of Experimental Medicine, 1994, 180, 223-231.	8.5	369
254	Impaired interleukin 12 production in human immunodeficiency virus-infected patients Journal of Experimental Medicine, 1994, 179, 1361-1366.	8.5	431
255	Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells Journal of Experimental Medicine, 1994, 180, 211-222.	8.5	339
256	The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science, 1994, 263, 235-237.	12.6	739
257	Interleukin-12: A bridge between innate resistance and adaptive immunity with a role in infection and acquired immunodeficiency. Journal of Clinical Immunology, 1994, 14, 149-161.	3.8	174
258	Infection with Leishmania major induces interleukin-12 production in vivo. Immunology Letters, 1994, 40, 157-161.	2.5	87
259	Cooperation of Natural Killer Cell Stimulatory Factor/Interleukin-12 with Other Stimuli in the Induction of Cytokines and Cytotoxic Cell-Associated Molecules in Human T and NK Cells. Cellular Immunology, 1994, 156, 480-492.	3.0	153
260	Cytokine cross-talk between phagocytic cells and lymphocytes: Relevance for differentiation/activation of phagocytic cells and regulation of adaptive immunity. Journal of Cellular Biochemistry, 1993, 53, 301-308.	2.6	66
261	Enhancing effect of natural killer cell stimulatory factor (NKSF/interleukin-12) on cell-mediated cytotoxicity against tumor-derived and virus-infected cells. European Journal of Immunology, 1993, 23, 1826-1830.	2.9	149
262	Interleukin-12 and its role in the generation of TH1 cells. Trends in Immunology, 1993, 14, 335-338.	7.5	867
263	Differential Effects of Tyrosine Kinase Inhibition in CD69 Antigen Expression and Lytic Activity Induced by rlL-2, rlL-12, and rlFN-α in Human NK Cells. Cellular Immunology, 1993, 150, 382-390.	3.0	39
264	Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells Journal of Experimental Medicine, 1993, 178, 1041-1048.	8.5	1,336
265	Producer cells of interleukin 12. Parasitology Today, 1993, 9, 97.	3.0	13
266	Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells Journal of Experimental Medicine, 1993, 177, 1199-1204.	8.5	1,615
267	Characterization of a human monocyte antigen, B148.4, regulated during cell differentiation and activation. Journal of Leukocyte Biology, 1993, 53, 390-398.	3.3	10
268	Morphological and Functional Differences Between HLA-DR+ Peripheral Blood Dendritic Cells and HLA-DR+ FN-Alpha Producing Cells. Advances in Experimental Medicine and Biology, 1993, 329, 173-178.	1.6	19
269	Induction of HLA Class II Molecules on Human T Cells: Relationship to Immunoregulation and the Pathogenesis of AIDS. DNA and Cell Biology, 1992, 11, 265-268.	1.9	12
270	Natural killer cell stimulatory factor (NKSF) or interleukin-12 is a key regulator of immune response and inflammation. Progress in Growth Factor Research, 1992, 4, 355-368.	1.6	146

#	Article	IF	CITATIONS
271	Role of the production of natural killer cell stimulatory factor (NKSF/IL-12) in the ability of B cell lines to stimulate T and NK cell proliferation. Cellular Immunology, 1992, 145, 187-198.	3.0	47
272	Regulation of tumor necrosis factor production by monocyte-macrophages and lymphocytes. Immunologic Research, 1991, 10, 89-103.	2.9	26
273	Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers Journal of Experimental Medicine, 1991, 173, 869-879.	8.5	953
274	Natural killer cell-mediated lysis of herpes simplex virus-infected fibroblasts: Inability to detect soluble factors that contribute to lysis. Cellular Immunology, 1990, 127, 221-229.	3.0	4
275	Tumor Necrosis Factor is a Differentiation-Inducing Factor for Hematopoietic Cells. , 1990, , 114-119.		1
276	Interferon gamma induces in human neutrophils and macrophages expression of the mRNA for the high affinity receptor for monomeric IgG (Fcl³R-I or CD64). Biochemical and Biophysical Research Communications, 1990, 170, 582-588.	2.1	59
277	Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes Journal of Experimental Medicine, 1989, 170, 827-845.	8.5	1,870
278	Biology of Natural Killer Cells. Advances in Immunology, 1989, 47, 187-376.	2.2	2,592
279	Control of Hematopoietic Progenitor Cells by Natural Killer Cells. , 1989, , 247-266.		0
280	Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells Journal of Experimental Medicine, 1988, 167, 452-472.	8.5	357
281	Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes Journal of Experimental Medicine, 1987, 165, 1581-1594.	8.5	367
282	Comparative binding of murine and human monoclonal antibodies reacting with myelin-associated glycoprotein to myelin and human lymphocytes. Journal of Neuroimmunology, 1987, 15, 229-242.	2.3	9
283	Regulation of hematopoiesis by T lymphocytes and natural killer cells. Critical Reviews in Oncology/Hematology, 1987, 7, 219-265.	4.4	24
284	Regulation of Activation and Proliferation of Human Natural Killer Cells. Advances in Experimental Medicine and Biology, 1987, 213, 285-298.	1.6	2
285	Immune Interferon and Cytotoxins: Regulatory Effects on Myeloid Cells. , 1987, , 267-305.		5
286	Tumor necrosis factor and lymphotoxin induce differentiation of human myeloid cell lines in synergy with immune interferon Journal of Experimental Medicine, 1986, 164, 1206-1225.	8.5	261
287	Immune interferon: a pleiotropic lymphokine with multiple effects. Trends in Immunology, 1985, 6, 131-136.	7.5	669
288	Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon Journal of Experimental Medicine, 1985, 162, 1512-1530.	8.5	251

#	Article	IF	CITATIONS
289	Response of resting human peripheral blood natural killer cells to interleukin 2 Journal of Experimental Medicine, 1984, 160, 1147-1169.	8.5	612
290	Natural Killer Cells in Viral Infection. , 1984, , 11-19.		11
291	Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. American Journal of Hematology, 1983, 14, 255-269.	4.1	36
292	Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells Journal of Experimental Medicine, 1983, 158, 1092-1113.	8.5	326
293	Binding of platelets to human monocytes: A source of artifacts in the study of the specificity of antileukocyte antibodies. Journal of Immunological Methods, 1982, 50, 269-276.	1.4	33
294	PHENOTYPIC CHARACTERIZATION OF HUMAN NATURAL KILLER AND ANTIBODY-DEPENDENT KILLER CELLS AS AN HOMOGENEOUS AND DISCRETE CELL SUBSET. , 1982, , 39-45.		4
295	INTERFERONS AND NATURAL KILLER CELLS: INTERACTING SYSTEMS OF NON-SPECIFIC HOST DEFENSE. , 1982, , 369-374.		5
296	Monoclonal antibodies specific for Kappa chain, Lambda chain, and IgG1 of human gammaglobulin. Human Immunology, 1980, 1, 111-120.	2.4	6
297	INTERFERON MODULATION OF NATURAL KILLER CELL ACTIVITY. Annals of the New York Academy of Sciences, 1980, 350, 55-62.	3.8	33
298	NATURAL KILLER CELL ACTIVITY AGAINST VIRUS-INFECTED CELLS. , 1980, , 1171-1179.		9
299	SPONTANEOUS CELL-MEDIATED CYTOTOXICITY: MODULATION BY INTERFERON**The experimental work described in this paper has been supported by NIH grants CA-20833, CA-10815, CA 43882 and NS-11036 and by the National Multiple Sclerosis Society , 1980, , 655-670.		2
300	INTERFERON PRODUCTION IN LYMPHOCYTES CULTURED WITH TUMOR-DERIVED CELLS**The experimental work described in this paper was supported by NIH grants CA-20833, CA-10815, CA-43882 and NS-11036 and by the National Multiple Sclerosis Society , 1980, , 1199-1211.		0
301	OPPOSING EFFECTS OF INTERFERON ON NATURAL KILLER AND TARGET CELLS. , 1979, , 75-81.		0
302	Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis Journal of Experimental Medicine, 1978, 147, 1314-1333.	8.5	742
303	Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation Journal of Experimental Medicine, 1978, 147, 1299-1313.	8.5	286
304	Evaluation of the effect of ammonium chloride treatment on the activity of human effector cells in antibody-dependent and spontaneous cell-mediated cytotoxicity. Journal of Immunological Methods, 1977, 15, 97-100.	1.4	7
305	Tumour cell lines induce interferon in human lymphocytes. Nature, 1977, 270, 611-613.	27.8	99
306	Cell-mediated cytotoxicity to SV40-specific tumour-associated antigens. Nature, 1976, 261, 312-314.	27.8	119

#	‡	Article	lF	CITATIONS
3	807	Models for recognition of virally modified cells by immune thymus-derived lymphocytes. Immunogenetics, 1976, 3, 517-524.	2.4	100
3	808	MEMBRANE IMMUNOFLUORESCENCE IN HUMAN TRANSPLANTATION BIOLOGY. Annals of the New York Academy of Sciences, 1975, 254, 280-288.	3.8	O