Nicholas J Brandon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4271079/publications.pdf

Version: 2024-02-01

50276 48315 8,711 117 46 88 citations h-index g-index papers 142 142 142 9941 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature, 1999, 397, 69-72.	27.8	685
2	DISC1 and PDE4B Are Interacting Genetic Factors in Schizophrenia That Regulate cAMP Signaling. Science, 2005, 310, 1187-1191.	12.6	605
3	Activation of estrogen receptor- \hat{l}^2 regulates hippocampal synaptic plasticity and improves memory. Nature Neuroscience, 2008, 11 , 334-343.	14.8	441
4	Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nature Reviews Neuroscience, 2011, 12, 707-722.	10.2	384
5	Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nature Neuroscience, 2010, 13, 327-332.	14.8	367
6	Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 2018, 21, 1117-1125.	14.8	300
7	Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1–ErbB4 and DISC1. Trends in Neurosciences, 2009, 32, 485-495.	8.6	293
8	Phosphodiesterase 10A Inhibitor Activity in Preclinical Models of the Positive, Cognitive, and Negative Symptoms of Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 574-590.	2.5	261
9	Schizophrenia-Related Neural and Behavioral Phenotypes in Transgenic Mice Expressing Truncated <i>Disc1 </i> . Journal of Neuroscience, 2008, 28, 10893-10904.	3.6	237
10	Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity. Journal of Neuroscience, 2009, 29, 12982-12993.	3.6	229
11	Understanding the Role of DISC1 in Psychiatric Disease and during Normal Development. Journal of Neuroscience, 2009, 29, 12768-12775.	3.6	169
12	Cell Surface Stability of \hat{I}^3 -Aminobutyric Acid Type A Receptors. Journal of Biological Chemistry, 1999, 274, 36565-36572.	3.4	167
13	GABAA Receptor Phosphorylation and Functional Modulation in Cortical Neurons by a Protein Kinase C-dependent Pathway. Journal of Biological Chemistry, 2000, 275, 38856-38862.	3.4	162
14	A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nature Medicine, 2016, 22, 649-656.	30.7	142
15	Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends in Neurosciences, 2017, 40, 555-571.	8.6	140
16	KCC2 activity is critical in limiting the onset and severity of status epilepticus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3523-3528.	7.1	139
17	DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends in Molecular Medicine, 2011, 17, 699-706.	6.7	126
18	The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Molecular Psychiatry, 2011, 16, 1006-1023.	7.9	124

#	Article	IF	CITATIONS
19	Multiple roles of protein kinases in the modulation of \hat{I}^3 -aminobutyric acidA receptor function and cell surface expression., 2002, 94, 113-122.		122
20	Selective Activation of M ₄ Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents. ACS Chemical Neuroscience, 2014, 5, 920-942.	3 . 5	116
21	Subunit-Specific Association of Protein Kinase C and the Receptor for Activated C Kinase with GABA Type A Receptors. Journal of Neuroscience, 1999, 19, 9228-9234.	3.6	114
22	Interplay of Palmitoylation and Phosphorylation in the Trafficking and Localization of Phosphodiesterase 10A: Implications for the Treatment of Schizophrenia. Journal of Neuroscience, 2010, 30, 9027-9037.	3 . 6	109
23	Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10166-10171.	7.1	109
24	GABAA receptors and their associated proteins: Implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology, 2009, 57, 481-495.	4.1	101
25	A-kinase anchoring protein $79/150$ facilitates the phosphorylation of GABAA receptors by cAMP-dependent protein kinase via selective interaction with receptor \hat{l}^2 subunits. Molecular and Cellular Neurosciences, 2003, 22, 87-97.	2.2	100
26	Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nature Communications, 2020, 11, 462.	12.8	96
27	Receptor for Activated C Kinase-1 Facilitates Protein Kinase C-Dependent Phosphorylation and Functional Modulation of GABAAReceptors with the Activation of G-Protein-Coupled Receptors. Journal of Neuroscience, 2002, 22, 6353-6361.	3.6	87
28	Selective Inhibition of KCC2 Leads to Hyperexcitability and Epileptiform Discharges in Hippocampal Slices and <i>In Vivo </i> . Journal of Neuroscience, 2015, 35, 8291-8296.	3.6	87
29	Estrogen Receptor \hat{l}^2 Activity Modulates Synaptic Signaling and Structure. Journal of Neuroscience, 2010, 30, 13454-13460.	3.6	86
30	The Behavioral and Neurochemical Effects of a Novel d-Amino Acid Oxidase Inhibitor Compound 8 [4 <i>H</i> -Thieno [3,2- <i>b</i>)pyrrole-5-carboxylic Acid] and d-Serine. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 921-930.	2. 5	80
31	The orphan GPCR, GPR88, modulates function of the striatal dopamine system: A possible therapeutic target for psychiatric disorders?. Molecular and Cellular Neurosciences, 2009, 42, 438-447.	2.2	79
32	Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8457-8462.	7.1	78
33	Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3828-3833.	7.1	68
34	Molecular architecture of potassium chloride co-transporter KCC2. Scientific Reports, 2017, 7, 16452.	3.3	66
35	Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy. American Journal of Human Genetics, 2016, 98, 735-743.	6.2	65
36	Discovery of Imidazo[1,5- <i>a</i>)pyrido[3,2- <i>e</i>)pyrazines as a New Class of Phosphodiesterase 10A Inhibitiors. Journal of Medicinal Chemistry, 2010, 53, 4399-4411.	6.4	62

#	Article	IF	CITATIONS
37	Highly Potent, Selective, and Orally Active Phosphodiesterase 10A Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 7621-7638.	6.4	62
38	The clinical trial landscape in amyotrophic lateral sclerosisâ€"Past, present, and future. Medicinal Research Reviews, 2020, 40, 1352-1384.	10.5	61
39	Locally Reducing KCC2 Activity in the Hippocampus is Sufficient to Induce Temporal Lobe Epilepsy. EBioMedicine, 2018, 32, 62-71.	6.1	60
40	Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABA _A receptors at inhibitory synapses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11763-11768.	7.1	57
41	Developmental Regulation of KCC2 Phosphorylation Has Long-Term Impacts on Cognitive Function. Frontiers in Molecular Neuroscience, 2019, 12, 173.	2.9	55
42	Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport. Human Molecular Genetics, 2012, 21, 2017-2028.	2.9	54
43	Deficits in spatial memory correlate with modified Î ³ -aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20039-20044.	7.1	53
44	Developmental seizures and mortality result from reducing GABAA receptor $\hat{l}\pm 2$ -subunit interaction with collybistin. Nature Communications, 2018, 9, 3130.	12.8	53
45	Estrogen Receptor Neurobiology and its Potential for Translation into Broad Spectrum Therapeutics for CNS Disorders. Current Molecular Pharmacology, 2009, 2, 215-236.	1.5	52
46	The Ability of BDNF to Modify Neurogenesis and Depressive-Like Behaviors Is Dependent upon Phosphorylation of Tyrosine Residues 365/367 in the GABA _A -Receptor \hat{I}^3 2 Subunit. Journal of Neuroscience, 2013, 33, 15567-15577.	3.6	49
47	Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Molecular and Cellular Neurosciences, 2016, 73, 104-115.	2.2	49
48	The small molecule CLP257 does not modify activity of the K+–Clâ⁻ co-transporter KCC2 but does potentiate GABAA receptor activity. Nature Medicine, 2017, 23, 1394-1396.	30.7	47
49	Schizophrenia drug discovery and development in an evolving era: Are new drug targets fulfilling expectations?. Journal of Psychopharmacology, 2015, 29, 230-238.	4.0	45
50	Emerging Biology of PDE10A. Current Pharmaceutical Design, 2014, 21, 378-388.	1.9	45
51	Discovery of VU0467485/AZ13713945: An M ₄ PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Medicinal Chemistry Letters, 2017, 8, 233-238.	2.8	43
52	Fyn kinase contributes to tyrosine phosphorylation of the GABAA receptor \hat{l}^32 subunit. Molecular and Cellular Neurosciences, 2010, 44, 129-134.	2.2	42
53	Pharmacokinetics of Oral d-Serine in d-Amino Acid Oxidase Knockout Mice. Drug Metabolism and Disposition, 2012, 40, 2067-2073.	3.3	42
54	Compromising KCC2 transporter activity enhances the development of continuous seizure activity. Neuropharmacology, 2016, 108, 103-110.	4.1	42

#	Article	IF	CITATIONS
55	Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophrenia Research, 2017, 184, 128-136.	2.0	42
56	Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cellular Signalling, 2008, 20, 2356-2369.	3.6	41
57	Regulation of N-Methyl-D-Aspartate Receptors by Disrupted-in-Schizophrenia-1. Biological Psychiatry, 2014, 75, 414-424.	1.3	41
58	Compromising the phosphodependent regulation of the GABA $<$ sub $>$ A $<$ sub $>$ R \hat{I}^2 3 subunit reproduces the core phenotypes of autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14805-14810.	7.1	41
59	Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function. NPJ Schizophrenia, 2016, 2, 16024.	3.6	41
60	Deficits in the activity of presynaptic \hat{l}^3 -aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome. Journal of Biological Chemistry, 2017, 292, 6621-6632.	3.4	39
61	Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Molecular Psychiatry, 2020, 25, 831-843.	7.9	36
62	Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. Journal of Lipid Research, 2018, 59, 830-842.	4.2	35
63	Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154. Neuropharmacology, 2018, 128, 492-502.	4.1	35
64	Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 410-423.	2.5	33
65	How has DISC1 enabled drug discovery?. Molecular and Cellular Neurosciences, 2008, 37, 187-195.	2.2	32
66	Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1. Molecular Psychiatry, 2016, 21, 1449-1459.	7.9	32
67	Challenges in the development of an M 4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 171-175.	2.2	32
68	Assessing the role of endooligopeptidase activity of Ndel1 (nuclear-distribution gene E homolog like-1) in neurite outgrowth. Molecular and Cellular Neurosciences, 2010, 44, 353-361.	2.2	31
69	<scp>d</scp> â€amino acid oxidase knockout (<i>Dao</i> ^{â⁻'/â⁻'}) mice show enhanced shortâ€term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. European Journal of Neuroscience, 2015, 41, 1167-1179.	2.6	30
70	N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation. Journal of Biological Chemistry, 2017, 292, 21253-21263.	3.4	28
71	Regulation of the cytoskeleton by Disrupted-in-Schizophrenia 1 (DISC1). Molecular and Cellular Neurosciences, 2011, 48, 359-364.	2.2	27
72	d-Amino Acid Oxidase Activity Is Inhibited by an Interaction with Bassoon Protein at the Presynaptic Active Zone. Journal of Biological Chemistry, 2011, 286, 28867-28875.	3.4	24

#	Article	IF	CITATIONS
73	L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Scientific Reports, 2019, 9, 13810.	3.3	24
74	State-dependent alterations in sleep/wake architecture elicited by the M4 PAM VU0467154 – Relation to antipsychotic-like drug effects. Neuropharmacology, 2016, 102, 244-253.	4.1	23
75	Novel triazines as potent and selective phosphodiesterase 10A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5876-5884.	2.2	22
76	Chemoproteomics Demonstrates Target Engagement and Exquisite Selectivity of the Clinical Phosphodiesterase 10A Inhibitor MP-10 in Its Native Environment. ACS Chemical Biology, 2014, 9, 2823-2832.	3.4	22
77	Searching for cognitive enhancement in the Morris water maze: better and worse performance in Dâ€amino acid oxidase knockout (⟨i⟩Dao⟨ i⟩⟨sup⟩â^³/â^³⟨ sup⟩) mice. European Journal of Neuroscience, 2016, 43, 979-989.	2.6	22
78	X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 9299-9319.	6.4	22
79	Truncation of the TAR DNA-binding protein 43 is not a prerequisite for cytoplasmic relocalization, and is suppressed by caspase inhibition and by introduction of the A90V sequence variant. PLoS ONE, 2017, 12, e0177181.	2.5	22
80	Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Frontiers in Molecular Neuroscience, 2017, 10, 46.	2.9	21
81	Organization of TNIK in dendritic spines. Journal of Comparative Neurology, 2015, 523, 1913-1924.	1.6	20
82	Variation of Human Neural Stem Cells Generating Organizer States InÂVitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Reports, 2020, 31, 107599.	6.4	20
83	Identification and characterisation of a Maf1/Macoco protein complex that interacts with GABAA receptors in neurons. Molecular and Cellular Neurosciences, 2010, 44, 330-341.	2.2	19
84	Optimization of M 4 positive allosteric modulators (PAMs): The discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2296-2301.	2.2	17
85	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and biological characterization of a series of azetidine-derived tertiary amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5179-5184.	2.2	17
86	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and in vivo characterization of a series of 3-aminoazetidine-derived amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2990-2995.	2.2	16
87	Identification of a Core Amino Acid Motif within the $\hat{l}\pm$ Subunit of GABAARs that Promotes Inhibitory Synaptogenesis and Resilience to Seizures. Cell Reports, 2019, 28, 670-681.e8.	6.4	16
88	2-(Pyrrolidin-1-yl)ethyl-3,4-dihydroisoquinolin-1(<i>>2H</i>)-one Derivatives as Potent and Selective Histamine-3 Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 2452-2468.	6.4	15
89	Increased burstâ€firing of ventral tegmental area dopaminergic neurons in <scp>d</scp> â€amino acid oxidase knockout mice <i>in vivo</i> . European Journal of Neuroscience, 2014, 40, 2999-3009.	2.6	15
90	Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Frontiers in Molecular Neuroscience, 2020, 13, 563091.	2.9	15

#	Article	IF	Citations
91	KCC2 is required for the survival of mature neurons but not for their development. Journal of Biological Chemistry, 2021, 296, 100364.	3.4	15
92	Future Viable Models of Psychiatry Drug Discovery in Pharma. Journal of Biomolecular Screening, 2013, 18, 509-521.	2.6	14
93	Axl receptor tyrosine kinase is a regulator of apolipoprotein E. Molecular Brain, 2020, 13, 66.	2.6	12
94	Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system. European Journal of Neuroscience, 2014, 39, 1068-1073.	2.6	11
95	Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4282-4286.	2.2	11
96	Estradiol reverses excitatory synapse loss in a cellular model of neuropsychiatric disorders. Translational Psychiatry, 2020, 10, 16.	4.8	11
97	Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells. PLoS ONE, 2019, 14, e0225145.	2.5	10
98	Inhibiting with-no-lysine kinases enhances $K+/Cl\hat{a}^{\gamma}$ cotransporter 2 activity and limits status epilepticus. Brain, 2022, 145, 950-963.	7.6	10
99	The cellular target of antidepressants. Nature Neuroscience, 2015, 18, 1537-1538.	14.8	9
100	Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Frontiers in Molecular Neuroscience, 2019, 12, 120.	2.9	9
101	Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry. Advances in Neurobiology, 2017, 17, 15-43.	1.8	9
102	Taking a bird's eye view on a mouse model review: a comparison of findings from mouse models targetingDISC1orDISC1-interacting proteins. Future Neurology, 2011, 6, 661-677.	0.5	8
103	Verbal working memory and functional large-scale networks in schizophrenia. Psychiatry Research - Neuroimaging, 2017, 270, 86-96.	1.8	8
104	Chorea-related mutations in PDE10A result in aberrant compartmentalization and functionality of the enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 677-688.	7.1	8
105	Tool inhibitors and assays to interrogate the biology of the TRAF2 and NCK interacting kinase. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1962-1967.	2.2	7
106	Phosphorylationâ€dependent control of Activityâ€regulated cytoskeletonâ€associated protein (Arc) protein by TNIK. Journal of Neurochemistry, 2021, 158, 1058-1073.	3.9	7
107	Novel inhibitors of As(III) S-adenosylmethionine methyltransferase (AS3MT) identified by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3231-3235.	2.2	6
108	VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1714-1718.	2.2	6

#	Article	IF	CITATIONS
109	SUMOylation of DISC1: A Potential Role in Neural Progenitor Proliferation in the Developing Cortex. Molecular Neuropsychiatry, 2016, 2, 20-27.	2.9	4
110	Uncovering the function of Disrupted in Schizophrenia 1 through interactions with the cAMP phosphodiesterase PDE4: Contributions of the Houslay lab to molecular psychiatry. Cellular Signalling, 2016, 28, 749-752.	3.6	4
111	SAR inspired by aldehyde oxidase (AO) metabolism: Discovery of novel, CNS penetrant tricyclic M4 PAMs. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2224-2228.	2.2	4
112	PDE10A mutations help to unwrap the neurobiology of hyperkinetic disorders. Cellular Signalling, 2019, 60, 31-38.	3.6	4
113	O10.7. INVESTIGATING THE MECHANISMS UNDERLYING THE BENEFICIAL EFFECTS OF ESTROGENS IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S105-S105.	4.3	1
114	The road ahead: A perspective of drug discovery in psychiatry in 2013 from inside an evolving industry. Biochemist, 2013, 35, 24-29.	0.5	1
115	Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Molecular Psychiatry, 2022, , .	7.9	1
116	What Happened When the Environment Met DISC1? Showing the Interactive Effects of Poly I:C and DISC1 on Mouse Phenotypes Related to Mood Disorders. Biological Psychiatry, 2010, 68, 1080-1081.	1.3	0
117	Pyrrolidin-3-yl-N-methylbenzamides as potent histamine 3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5957-5960.	2.2	0