
Mark M Wilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4270810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guesswork With Quantum Side Information. IEEE Transactions on Information Theory, 2022, 68, 322-338.	2.4	2
2	One-Shot Yield-Cost Relations in General Quantum Resource Theories. PRX Quantum, 2022, 3, .	9.2	4
3	Thermodynamic Constraints on Quantum Information Gain and Error Correction: A Triple Trade-Off. PRX Quantum, 2022, 3, .	9.2	4
4	Optimal tests for continuous-variable quantum teleportation and photodetectors. Physical Review Research, 2022, 4, .	3.6	4
5	Toward Optimal Quantum Ranging: Hypothesis Testing for an Unknown Return Signal. Physical Review Applied, 2022, 17, .	3.8	1
6	Quantum state discrimination circuits inspired by Deutschian closed timelike curves. Physical Review A, 2022, 105, .	2.5	2
7	Quantum Algorithm for Petz Recovery Channels and Pretty Good Measurements. Physical Review Letters, 2022, 128, .	7.8	14
8	Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution. Physical Review A, 2021, 103, .	2.5	25
9	Geometric distinguishability measures limit quantum channel estimation and discrimination. Quantum Information Processing, 2021, 20, .	2.2	28
10	Entropy of a quantum channel. Physical Review Research, 2021, 3, .	3.6	22
11	RLD Fisher information bound for multiparameter estimation of quantum channels. New Journal of Physics, 2021, 23, 073040.	2.9	3
12	Upper bound on the classical capacity of a quantum channel assisted by classical feedback. , 2021, , .		1
13	Symmetric distinguishability as a quantum resource. New Journal of Physics, 2021, 23, 083016.	2.9	3
14	Resource theory of unextendibility and nonasymptotic quantum capacity. Physical Review A, 2021, 104, .	2.5	8
15	Recoverability for optimized quantum f-divergences. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 385302.	2.1	6
16	Evaluating the advantage of adaptive strategies for quantum channel distinguishability. Physical Review A, 2021, 104, .	2.5	11
17	Second Law of Entanglement Dynamics for the Non-Asymptotic Regime. , 2021, , .		0
18	Optimal uniform continuity bound for conditional entropy of classical–quantum states. Quantum Information Processing, 2020, 19, 1.	2.2	10

#	Article	IF	CITATIONS
19	Coherent Quantum Channel Discrimination. , 2020, , .		2
20	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -logarithmic negativity. Physical Review A, 2020, 102, .	2.5	18
21	Cost of Quantum Entanglement Simplified. Physical Review Letters, 2020, 125, 040502.	7.8	29
22	Jonathan Patrick Dowling in memoriam. Nature Photonics, 2020, 14, 525-526.	31.4	1
23	Guesswork with Quantum Side Information: Optimal Strategies and Aspects of Security. , 2020, , .		0
24	Entropy of a Quantum Channel: Definition, Properties, and Application. , 2020, , .		1
25	Quantification of Unextendible Entanglement and Its Applications in Entanglement Distillation. , 2020, , .		Ο
26	Efficiently Computable Bounds for Magic State Distillation. Physical Review Letters, 2020, 124, 090505.	7.8	35
27	Fundamental limits on key rates in device-independent quantum key distribution. New Journal of Physics, 2020, 22, 023039.	2.9	36
28	Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices. Physical Review A, 2020, 101, .	2.5	21
29	Amortized channel divergence for asymptotic quantum channel discrimination. Letters in Mathematical Physics, 2020, 110, 2277-2336.	1.1	45
30	Information-theoretic aspects of the generalized amplitude-damping channel. Physical Review A, 2020, 102, .	2.5	31
31	Conditional Quantum One-Time Pad. Physical Review Letters, 2020, 124, 050503.	7.8	10
32	Characterizing the performance of continuous-variable Gaussian quantum gates. Physical Review Research, 2020, 2, .	3.6	5
33	Relative entropy and catalytic relative majorization. Physical Review Research, 2020, 2, .	3.6	17
34	Quantum Channel Capacities per Unit Cost. IEEE Transactions on Information Theory, 2019, 65, 418-435.	2.4	8
35	Extendibility Limits the Performance of Quantum Processors. Physical Review Letters, 2019, 123, 070502.	7.8	16
36	Extendibility of Bosonic Gaussian States. Physical Review Letters, 2019, 123, 050501.	7.8	11

3

#	Article	IF	CITATIONS
37	Quantifying the magic of quantum channels. New Journal of Physics, 2019, 21, 103002.	2.9	59
38	Quantum Reading Capacity: General Definition and Bounds. IEEE Transactions on Information Theory, 2019, 65, 7566-7583.	2.4	10
39	Stein's Lemma for Classical-Quantum Channels. , 2019, , .		3
40	Entropy Bound for the Classical Capacity of a Quantum Channel Assisted by Classical Feedback. , 2019, , .		3
41	Quantum rebound capacity. Physical Review A, 2019, 100, .	2.5	8
42	Entropic Energy-Time Uncertainty Relation. Physical Review Letters, 2019, 122, 100401.	7.8	25
43	Union bound for quantum information processing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180612.	2.1	14
44	Resource theory of asymmetric distinguishability for quantum channels. Physical Review Research, 2019, 1, .	3.6	44
45	Resource theory of asymmetric distinguishability. Physical Review Research, 2019, 1, .	3.6	30
46	Fundamental limits on quantum dynamics based on entropy change. Journal of Mathematical Physics, 2018, 59, .	1.1	32
47	Approximate reversal of quantum Gaussian dynamics. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 125301.	2.1	14
48	Approaches for approximate additivity of the Holevo information of quantum channels. Physical Review A, 2018, 97, .	2.5	60
49	Amortized entanglement of a quantum channel and approximately teleportation-simulable channels. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 035303.	2.1	37
50	Amortization does not enhance the max-Rains information of a quantum channel. New Journal of Physics, 2018, 20, 053044.	2.9	27
51	Recoverability for Holevo's Just-as-Good Fidelity. , 2018, , .		1
52	Energy-Constrained Private and Quantum Capacities of Quantum Channels. IEEE Transactions on Information Theory, 2018, 64, 7802-7827.	2.4	27
53	Fundamental Limits on the Capacities of Bipartite Quantum Interactions. Physical Review Letters, 2018, 121, 250504.	7.8	26
54	Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels. New Journal of Physics, 2018, 20, 063025.	2.9	45

#	Article	IF	CITATIONS
55	Applications of position-based coding to classical communication over quantum channels. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 444002.	2.1	26
56	Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy. Annales Henri Poincare, 2018, 19, 2955-2978.	1.7	70
57	Deconstruction and conditional erasure of quantum correlations. Physical Review A, 2018, 98, .	2.5	15
58	Entanglement cost and quantum channel simulation. Physical Review A, 2018, 98, .	2.5	32
59	Entanglement-assisted private communication over quantum broadcast channels. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 374001.	2.1	10
60	Conditional Decoupling of Quantum Information. Physical Review Letters, 2018, 121, 040504.	7.8	15
61	Rényi relative entropies of quantum Gaussian states. Journal of Mathematical Physics, 2018, 59, .	1.1	19
62	Optimized Quantum F-Divergences. , 2018, , .		0
63	Strong Converse Bound on the Two-Way Assisted Quantum Capacity. , 2018, , .		Ο
64	Optimized quantum <i>f</i> -divergences and data processing. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 374002.	2.1	29
65	Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels. Physical Review A, 2018, 97, .	2.5	12
66	Energy-constrained two-way assisted private and quantum capacities of quantum channels. Physical Review A, 2018, 97, .	2.5	13
67	Work and reversibility in quantum thermodynamics. Physical Review A, 2018, 97, .	2.5	9
68	Simulations of Closed Timelike Curves. Foundations of Physics, 2017, 47, 375-391.	1.3	7
69	Converse Bounds for Private Communication Over Quantum Channels. IEEE Transactions on Information Theory, 2017, 63, 1792-1817.	2.4	98
70	Strong Converse Rates for Quantum Communication. IEEE Transactions on Information Theory, 2017, 63, 715-727.	2.4	54
71	Relative entropy of steering: on its definition and properties. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 465301.	2.1	8
72	Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels. Physical Review Letters, 2017, 119, 150501.	7.8	18

#	Article	IF	CITATIONS
73	Conditional mutual information and quantum steering. Physical Review A, 2017, 96, .	2.5	17
74	Hadamard quantum broadcast channels. Quantum Information Processing, 2017, 16, 1.	2.2	17
75	Gaussian Hypothesis Testing and Quantum Illumination. Physical Review Letters, 2017, 119, 120501.	7.8	57
76	Position-based coding and convex splitting for private communication over quantum channels. Quantum Information Processing, 2017, 16, 1.	2.2	25
77	Information-theoretic limitations on approximate quantum cloning and broadcasting. Physical Review A, 2017, 96, .	2.5	13
78	Capacities of quantum amplifier channels. Physical Review A, 2017, 95, .	2.5	16
79	Upper bounds on secret-key agreement over lossy thermal bosonic channels. Physical Review A, 2017, 96, .	2.5	23
80	A meta-converse for private communication over quantum channels. , 2017, , .		2
81	Applications of position-based coding to classical communication over quantum channels. , 2017, , .		7
82	Unconstrained distillation capacities of a pure-loss bosonic broadcast channel. , 2016, , .		9
83	Entropic uncertainty and measurement reversibility. New Journal of Physics, 2016, 18, 073004.	2.9	60
84	Strong converse theorems using R $ ilde{A}$ ©nyi entropies. Journal of Mathematical Physics, 2016, 57, .	1.1	26
85	Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication. Communications in Mathematical Physics, 2016, 344, 797-829.	2.2	93
86	Bounds on Entanglement Distillation and Secret Key Agreement for Quantum Broadcast Channels. IEEE Transactions on Information Theory, 2016, 62, 2849-2866.	2.4	22
87	On the second-order asymptotics for entanglement-assisted communication. Quantum Information Processing, 2016, 15, 2569-2591.	2.2	33
88	Quantum Data Hiding in the Presence of Noise. IEEE Transactions on Information Theory, 2016, 62, 3745-3756.	2.4	6
89	Universal recoverability in quantum information. , 2016, , .		3
90	Operational meaning of quantum measures of recovery. Physical Review A, 2016, 94, .	2.5	12

6

#	Article	IF	CITATIONS
91	Squashed entanglement and approximate private states. Quantum Information Processing, 2016, 15, 4563-4580.	2.2	25
92	Approximate reversibility in the context of entropy gain, information gain, and complete positivity. Physical Review A, 2016, 93, .	2.5	41
93	Strong converse theorems using Rényi entropies. , 2016, , .		Ο
94	Swiveled Rényi entropies. Quantum Information Processing, 2016, 15, 1309-1345.	2.2	16
95	Polar Codes in Network Quantum Information Theory. IEEE Transactions on Information Theory, 2016, 62, 915-924.	2.4	15
96	Second-order coding rates for pure-loss bosonic channels. Quantum Information Processing, 2016, 15, 1289-1308.	2.2	13
97	Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 505301.	2.1	13
98	Second-order coding rates for entanglement-assisted communication. , 2015, , .		1
99	Fidelity of recovery, squashed entanglement, and measurement recoverability. Physical Review A, 2015, 92, .	2.5	45
100	Strong converse rates for quantum communication. , 2015, , .		7
101	Classical Codes for Quantum Broadcast Channels. IEEE Transactions on Information Theory, 2015, 61, 7017-7028.	2.4	28
102	Rényi generalizations of quantum information measures. Physical Review A, 2015, 91, .	2.5	22
103	Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity. Communications in Mathematical Physics, 2015, 334, 867-887.	2.2	47
104	Multipartite quantum correlations and local recoverability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140941.	2.1	17
105	Strong Converse for the Classical Capacity of Optical Quantum Communication Channels. IEEE Transactions on Information Theory, 2015, 61, 1842-1850.	2.4	7
106	Recoverability in quantum information theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150338.	2.1	73
107	Rényi generalizations of the conditional quantum mutual information. Journal of Mathematical Physics, 2015, 56, .	1.1	51
108	Rényi squashed entanglement, discord, and relative entropy differences. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 395303.	2.1	29

#	Article	IF	CITATIONS
109	Monotonicity of quantum relative entropy and recoverability. Quantum Information and Computation, 2015, 15, 1333-1354.	0.3	17
110	Title is missing!. Theory of Computing, 2015, 11, 59-103.	0.5	11
111	Preserving information from the beginning to the end of time in a Robertson–Walker spacetime. New Journal of Physics, 2014, 16, 123049.	2.9	14
112	Robust quantum data locking from phase modulation. Physical Review A, 2014, 90, .	2.5	16
113	Strong converse rates for classical communication over thermal and additive noise bosonic channels. Physical Review A, 2014, 89, .	2.5	10
114	Identifying the Information Gain of a Quantum Measurement. IEEE Transactions on Information Theory, 2014, 60, 7987-8006.	2.4	40
115	Strong converse for entanglement-assisted capacity. , 2014, , .		Ο
116	Quantum Enigma Machines and the Locking Capacity of a Quantum Channel. Physical Review X, 2014, 4, .	8.9	20
117	Strong converse for the capacity of quantum Gaussian channels. , 2014, , .		1
118	Dualities and identities for entanglement-assisted quantum codes. Quantum Information Processing, 2014, 13, 957-990.	2.2	46
119	Entanglement-Assisted Quantum Turbo Codes. IEEE Transactions on Information Theory, 2014, 60, 1203-1222.	2.4	91
120	Polar Codes for Private and Quantum Communication Over Arbitrary Channels. IEEE Transactions on Information Theory, 2014, 60, 3090-3103.	2.4	53
121	Identifying the information gain of a quantum measurement. , 2014, , .		1
122	Strong converse for the classical capacity of the pure-loss bosonic channel. Problems of Information Transmission, 2014, 50, 117-132.	0.5	14
123	Fundamental rate-loss tradeoff for optical quantum key distribution. Nature Communications, 2014, 5, 5235.	12.8	309
124	Noise and Disturbance in Quantum Measurements: An Information-Theoretic Approach. Physical Review Letters, 2014, 112, 050401.	7.8	111
125	Squashed entanglement and the two-way assisted capacities of a quantum channel. , 2014, , .		1
126	The Squashed Entanglement of a Quantum Channel. IEEE Transactions on Information Theory, 2014, 60, 4987-4998.	2.4	78

#	Article	IF	CITATIONS
127	Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy. Communications in Mathematical Physics, 2014, 331, 593-622.	2.2	324
128	Recursive Quantum Convolutional Encoders are Catastrophic: A Simple Proof. IEEE Transactions on Information Theory, 2013, 59, 6724-6731.	2.4	24
129	Quantum State Cloning Using Deutschian Closed Timelike Curves. Physical Review Letters, 2013, 111, 190401.	7.8	26
130	Polar Codes for Classical-Quantum Channels. IEEE Transactions on Information Theory, 2013, 59, 1175-1187.	2.4	73
131	Quantum Rate-Distortion Coding With Auxiliary Resources. IEEE Transactions on Information Theory, 2013, 59, 6755-6773.	2.4	25
132	Two-Message Quantum Interactive Proofs and the Quantum Separability Problem. , 2013, , .		2
133	Duality in Entanglement-Assisted Quantum Error Correction. IEEE Transactions on Information Theory, 2013, 59, 4020-4024.	2.4	64
134	Polar Codes for Degradable Quantum Channels. IEEE Transactions on Information Theory, 2013, 59, 4718-4729.	2.4	40
135	Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication. Quantum Information Processing, 2013, 12, 641-683.	2.2	7
136	Minimal-Memory, Noncatastrophic, Polynomial-Depth Quantum Convolutional Encoders. IEEE Transactions on Information Theory, 2013, 59, 1198-1210.	2.4	13
137	One-Shot Lossy Quantum Data Compression. IEEE Transactions on Information Theory, 2013, 59, 8057-8076.	2.4	27
138	Sequential decoding of a general classical-quantum channel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130259.	2.1	26
139	Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation. IEEE Transactions on Information Theory, 2013, 59, 615-630.	2.4	43
140	Quantum-to-classical rate distortion coding. Journal of Mathematical Physics, 2013, 54, .	1.1	16
141	Stochastic resonance in Gaussian quantum channels. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 045306.	2.1	4
142	Joint source–channel coding for a quantum multiple access channel. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 435302.	2.1	3
143	Partial decode-forward for quantum relay channels. , 2012, , .		10
144	Quantum trade-off coding for bosonic communication. Physical Review A, 2012, 86, .	2.5	33

#	Article	IF	CITATIONS
145	Information Trade-Offs for Optical Quantum Communication. Physical Review Letters, 2012, 108, 140501.	7.8	34
146	Classical codes for quantum broadcast channels. , 2012, , .		5
147	The quantum dynamic capacity formula of a quantum channel. Quantum Information Processing, 2012, 11, 1431-1463.	2.2	47
148	The information-theoretic costs of simulating quantum measurements. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 453001.	2.1	44
149	Public and private resource trade-offs for a quantum channel. Quantum Information Processing, 2012, 11, 1465-1501.	2.2	24
150	Performance of polar codes for quantum and private classical communication. , 2012, , .		4
151	Quantum polar codes for arbitrary channels. , 2012, , .		22
152	Explicit capacity-achieving receivers for optical communication and quantum reading. , 2012, , .		18
153	Polar coding to achieve the Holevo capacity of a pure-loss optical channel. , 2012, , .		32
154	Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Physical Review A, 2012, 86, .	2.5	131
155	Classical Communication Over a Quantum Interference Channel. IEEE Transactions on Information Theory, 2012, 58, 3670-3691.	2.4	34
156	Minimal-Memory Requirements for Pearl-Necklace Encoders of Quantum Convolutional Codes. IEEE Transactions on Computers, 2012, 61, 299-312.	3.4	6
157	Addressing the Clumsiness Loophole in a Leggett-Garg Test of Macrorealism. Foundations of Physics, 2012, 42, 256-265.	1.3	83
158	Perfect State Distinguishability and Computational Speedups with Postselected Closed Timelike Curves. Foundations of Physics, 2012, 42, 341-361.	1.3	21
159	Entanglement boosts quantum turbo codes. , 2011, , .		16
160	The free space optical interference channel. , 2011, , .		1
161	Examples of minimal-memory, non-catastrophic quantum convolutional encoders. , 2011, , .		2
162	Quantum interference channels. , 2011, , .		2

#	Article	IF	CITATIONS
163	Trade-off coding for universal qudit cloners motivated by the Unruh effect. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 415306.	2.1	10
164	Comment on "Secret-key-assisted private classical communication capacity over quantum channels― Physical Review A, 2011, 83, .	2.5	4
165	Nonlocal quantum information in bipartite quantum error correction. Quantum Information Processing, 2010, 9, 591-610.	2.2	13
166	Quantum convolutional coding with shared entanglement: general structure. Quantum Information Processing, 2010, 9, 509-540.	2.2	11
167	Entanglement-Assisted Communication of Classical and Quantum Information. IEEE Transactions on Information Theory, 2010, 56, 4682-4704.	2.4	123
168	Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Transactions on Information Theory, 2010, 56, 4705-4730.	2.4	59
169	Entanglement generation with a quantum channel and a shared state. , 2010, , .		6
170	Identifying the quantum correlations in light-harvesting complexes. Physical Review A, 2010, 82, .	2.5	56
171	Entanglement-assisted quantum convolutional coding. Physical Review A, 2010, 81, .	2.5	37
172	Convolutional entanglement distillation. , 2010, , .		5
173	Leggett-Garg inequalities and the geometry of the cut polytope. Physical Review A, 2010, 82, .	2.5	37
174	Trade-off capacities of the quantum Hadamard channels. Physical Review A, 2010, 81, .	2.5	55
175	Could light harvesting complexes exhibit non-classical effects at room temperature?. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 1347-1363.	2.1	60
176	Logical operators of quantum codes. Physical Review A, 2009, 79, .	2.5	18
177	Linear-optical hyperentanglement-assisted quantum error-correcting code. Physical Review A, 2009, 79,	2.5	28
178	Quantum-shift-register circuits. Physical Review A, 2009, 79, .	2.5	16
179	Public and private communication with a quantum channel and a secret key. Physical Review A, 2009, 80, .	2.5	14
180	Extra shared entanglement reduces memory demand in quantum convolutional coding. Physical Review A, 2009, 79, .	2.5	9

#	Article	IF	CITATIONS
181	Can classical noise enhance quantum transmission?. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 325301.	2.1	3
182	Quantum forbidden-interval theorems for stochastic resonance. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 465309.	2.1	18
183	Protecting quantum information with entanglement and noisy optical modes. Quantum Information Processing, 2009, 8, 401-413.	2.2	4
184	Localized Closed Timelike Curves Can Perfectly Distinguish Quantum States. Physical Review Letters, 2009, 102, 210402.	7.8	46
185	Applications of Forbidden Interval Theorems in Stochastic Resonance. Understanding Complex Systems, 2009, , 71-89.	0.6	2
186	Unified quantum convolutional coding. , 2008, , .		12
187	Encoding one logical qubit into six physical qubits. Physical Review A, 2008, 78, .	2.5	25
188	Coherent communication with linear optics. Physical Review A, 2008, 77, .	2.5	6
189	Optimal entanglement formulas for entanglement-assisted quantum coding. Physical Review A, 2008, 77, .	2.5	140
190	Coherent communication with continuous quantum variables. Physical Review A, 2007, 75, .	2.5	17
191	Entanglement-assisted quantum error correction with linear optics. Physical Review A, 2007, 76, .	2.5	18
192	ALTERNATE SCHEME FOR OPTICAL CLUSTER-STATE GENERATION WITHOUT NUMBER-RESOLVING PHOTON DETECTORS. International Journal of Quantum Information, 2007, 05, 617-626.	1.1	1
193	Coherent Communication of Continuous Quantum Variables with Linear Optics. , 2007, , .		0
194	Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy. , 0, .		1