Yangyang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4269448/publications.pdf

Version: 2024-02-01

		279798	434195
30	4,374	23	31
papers	4,374 citations	h-index	g-index
32	32	32	5471
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions. ACS Catalysis, 2022, 12, 363-371.	11.2	30
2	Facile Preparation of Hydrogen-Bonded Organic Framework/Cu ₂ O Heterostructure Films via Electrophoretic Deposition for Efficient CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2022, 14, 21050-21058.	8.0	16
3	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
4	Determination of Singlet Oxygen Quantum Yield of a Porphyrinic Metal–Organic Framework. Journal of Physical Chemistry C, 2021, 125, 7392-7400.	3.1	24
5	Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. ACS Applied Materials & Interfaces, 2021, 13, 37231-37238.	8.0	17
6	Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal–Organic Framework. ACS Catalysis, 2021, 11, 1424-1429.	11.2	36
7	Microwave-Assisted Rapid Synthesis of Nanoscale MOF-303 for Hydrogel Composites with Superior Proton Conduction at Ambient-Humidity Conditions. ACS Applied Energy Materials, 2021, 4, 14681-14688.	5.1	9
8	Thin Films of an Ultrastable Metal–Organic Framework for Formic Acid Sensing with High Selectivity and Excellent Reproducibility. , 2021, 3, 1746-1751.		13
9	Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal–Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction. ACS Applied Materials & Interfaces, 2021, 13, 60084-60091.	8.0	18
10	Green synthesis of Zr-based metal–organic framework hydrogel composites and their enhanced adsorptive properties. Inorganic Chemistry Frontiers, 2020, 7, 4813-4821.	6.0	18
11	Proton Conduction of an Acid-Resistant Open-Framework Chalcogenidometalate Hybrid in Anhydrous versus Humid Environments. Inorganic Chemistry, 2020, 59, 7283-7289.	4.0	12
12	Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Analytica Chimica Acta, 2019, 1055, 74-80.	5.4	42
13	Chemistry of Singlet Oxygen with a Cadmium–Sulfur Cluster: Physical Quenching versus Photooxidation. Journal of the American Chemical Society, 2019, 141, 67-71.	13.7	6
14	Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2019, 2, 465-469.	5.0	32
15	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	17.4	147
16	Metal–Organic Framework Hybrid Materials and Their Applications. Crystals, 2018, 8, 325.	2.2	58
17	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	18.8	275
18	Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal–Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chemistry - A European Journal, 2017, 23, 214-218.	3.3	98

YANGYANG LIU

#	Article	IF	CITATIONS
19	SALEâ€Ing a MOFâ€Based "Ship of Theseus.―Sequential Buildingâ€Block Replacement for Complete Reformulation of a Pillaredâ€Paddlewheel Metalâ€Organic Framework. European Journal of Inorganic Chemistry, 2016, 2016, 4345-4348.	2.0	21
20	Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 2016, 52, 7806-7809.	4.1	177
21	Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. Journal of the American Chemical Society, 2016, 138, 4178-4185.	13.7	108
22	MOFs and their grafted analogues: regioselective epoxide ring-opening with Zr ₆ nodes. Catalysis Science and Technology, 2016, 6, 6480-6484.	4.1	27
23	Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 13809-13813.	10.3	147
24	Evaluation of BrÃ,nsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	10.3	259
25	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	48.7	1,490
26	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	13.8	244
27	Surfaceâ€Specific Functionalization of Nanoscale Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14738-14742.	13.8	146
28	Instantaneous Hydrolysis of Nerveâ€Agent Simulants with a Sixâ€Connected Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 6795-6799.	13.8	338
29	Dual-Function Metal–Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS Nano, 2015, 9, 12358-12364.	14.6	207
30	Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015, 17, 7245-7253.	2.6	133