Rients E Niks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linkage Disequilibrium Mapping of Yield and Yield Stability in Modern Spring Barley Cultivars. Genetics, 2004, 168, 435-446.	1.2	375
2	A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics, 2007, 114, 1091-1103.	1.8	308
3	Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annual Review of Phytopathology, 2015, 53, 445-470.	3.5	201
4	Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics, 1998, 96, 1205-1215.	1.8	162
5	Nonhost and basal resistance: how to explain specificity?. New Phytologist, 2009, 182, 817-828.	3.5	152
6	<i>Rin4</i> Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid. Plant Cell, 2009, 21, 3368-3378.	3.1	146
7	A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics, 2007, 114, 487-500.	1.8	145
8	Linkage Disequilibrium Mapping of Morphological, Resistance, and Other Agronomically Relevant Traits in Modern Spring Barley Cultivars. Molecular Breeding, 2006, 17, 41-58.	1.0	141
9	Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 2002, 124, 201-216.	0.6	136
10	Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology, 2018, 1, 13.	2.0	107
11	Basal Host Resistance of Barley to Powdery Mildew: Connecting Quantitative Trait Loci and Candidate Genes. Molecular Plant-Microbe Interactions, 2010, 23, 91-102.	1.4	94
12	Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics, 1999, 99, 877-884.	1.8	92
13	Tomato Defense to Oldium neolycopersici: Dominant OI Genes Confer Isolate-Dependent Resistance Via a Different Mechanism Than Recessive ol-2. Molecular Plant-Microbe Interactions, 2005, 18, 354-362.	1.4	83
14	The <i>R_{Pi-mcd1}</i> Locus from <i>Solanum microdontum</i> Involved in Resistance to <i>Phytophthora infestans</i> , Causing a Delay in Infection, Maps on Potato Chromosome <i>4</i> in a Cluster of NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2008, 21, 909-918.	1.4	83
15	Isolate specificity of quantitative trait loci for partial resistance of barley to <i>Puccinia hordei</i> confirmed in mapping populations and nearâ€isogenic lines. New Phytologist, 2008, 177, 743-755.	3.5	79
16	High Diversity of Genes for Nonhost Resistance of Barley to Heterologous Rust Fungi. Genetics, 2008, 178, 2327-2339.	1.2	77
17	An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley. PLoS ONE, 2010, 5, e8598.	1.1	77
18	European virulence survey for leaf rust in wheat. Agronomy for Sustainable Development, 2000, 20, 793-804	0.8	77

#	Article	IF	CITATIONS
19	Innate Nonhost Immunity in Barley to Different Heterologous Rust Fungi Is Controlled by Sets of Resistance Genes with Different and Overlapping Specificities. Molecular Plant-Microbe Interactions, 2006, 19, 1270-1279.	1.4	70
20	A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus. Theoretical and Applied Genetics, 2004, 109, 1536-1543.	1.8	65
21	Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta, 2004, 220, 71-79.	1.6	57
22	Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding, 2001, 8, 187-195.	1.0	56
23	Characterization of Lr46, a Gene Conferring Partial Resistance to Wheat Leaf Rust. Hereditas, 2004, 135, 111-114.	0.5	56
24	Haustorium Formation by <i>Puccinia hordei</i> in Leaves of Hypersensitive, Partially Resistant, and Nonhost Plant Genotypes. Phytopathology, 1983, 73, 64.	1.1	56
25	Early abortion of colonies of leaf rust, <i>Puccinia hordei</i> , in partially resistant barley seedlings. Canadian Journal of Botany, 1982, 60, 714-723.	1.2	55
26	Title is missing!. European Journal of Plant Pathology, 1998, 104, 399-407.	0.8	55
27	Resistance against barley leaf rust (Puccinia hordei) in West-European spring barley germplasm. Agronomy for Sustainable Development, 2000, 20, 769-782.	0.8	53
28	The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Molecular Breeding, 2000, 6, 1-9.	1.0	52
29	Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Molecular Plant Pathology, 2004, 5, 389-396.	2.0	52
30	The barley (<i>Hordeum vulgare</i>) cellulose synthaseâ€like D2 gene (<i>HvCslD2</i>) mediates penetration resistance to hostâ€adapted and nonhost isolates of the powdery mildew fungus. New Phytologist, 2016, 212, 421-433.	3.5	52
31	Comparative Histology of Partial Resistance and the Nonhost Reaction to Leaf Rust Pathogens in Barley and Wheat Seedlings. Phytopathology, 1983, 73, 60.	1.1	51
32	Infection Structures of Host-Specialized Isolates of Uromyces viciae-fabae and of Other Species of Uromyces Infecting Leguminous Crops. Plant Disease, 2005, 89, 17-22.	0.7	49
33	Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 1613-1625.	1.8	49
34	Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum) Tj ETQq0 0 C) rgBT /Over 1.0	lock 10 Tf 50
35	Prehaustorial and Posthaustorial Resistance to Wheat Leaf Rust in Diploid Wheat Seedlings. Phytopathology, 1991, 81, 847.	1.1	48

#	Article	IF	CITATIONS
37	Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theoretical and Applied Genetics, 2011, 123, 69-76.	1.8	46
38	Nonhost plant species as donors for resistance to pathogens with narrow host range I. Determination of nonhost status. Euphytica, 1987, 36, 841-852.	0.6	45
39	Dissection of the Barley 2L1.0 Region Carrying the â€~ <i>Laevigatum</i> ' Quantitative Resistance Gene to Leaf Rust Using Near-Isogenic Lines (NIL) and subNIL. Molecular Plant-Microbe Interactions, 2007, 20, 1604-1615.	1.4	43
40	Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica, 2006, 151, 421-429.	0.6	37
41	Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5, 1129-1135.	4.7	37
42	Genetic dissection of <i>Lactuca saligna</i> nonhost resistance to downy mildew at various lettuce developmental stages. Plant Pathology, 2009, 58, 923-932.	1.2	36
43	Peroxidase Profiling Reveals Genetic Linkage between Peroxidase Gene Clusters and Basal Host and Non-Host Resistance to Rusts and Mildew in Barley. PLoS ONE, 2010, 5, e10495.	1.1	35
44	Title is missing!. Euphytica, 2001, 117, 209-215.	0.6	34
45	Assessment of epidemiological parameters and their use in epidemiological and forecasting models of cereal airborne diseases. Agronomy for Sustainable Development, 2000, 20, 715-727.	0.8	34
46	<i>Oidium neolycopersici</i> : Intraspecific Variability Inferred from Amplified Fragment Length Polymorphism Analysis and Relationship with Closely Related Powdery Mildew Fungi Infecting Various Plant Species. Phytopathology, 2008, 98, 529-540.	1.1	33
47	Nonhost plant species as donors for resistance to pathogens with narrow host range. II. Concepts and evidence on the genetic basis of nonhost resistance. Euphytica, 1988, 37, 89-99.	0.6	32
48	Morphology and AFLP markers suggest three <i>Hordeum chilense</i> ecotypes that differ in avoidance to rust fungi. Canadian Journal of Botany, 2001, 79, 204-213.	1.2	32
49	Morphology and AFLP markers suggest three <i>Hordeum chilense</i> ecotypes that differ in avoidance to rust fungi. Canadian Journal of Botany, 2001, 79, 204-213.	1.2	32
50	Specificity of Prehaustorial Resistance to Puccinia hordei and to Two Inappropriate Rust Fungi in Barley. Phytopathology, 1998, 88, 856-861.	1.1	30
51	Histology of the Relation Between Minor and Major Genes for Resistance of Barley to Leaf Rust. Phytopathology, 1983, 73, 55.	1.1	29
52	QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L Genome, 2012, 55, 152-163.	0.9	28
53	Effectorâ€mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytologist, 2017, 216, 915-926.	3.5	28
54	Evidence for a Minor Gene–for–Minor Gene Interaction Explaining Nonhypersensitive Polygenic Partial Disease Resistance. Phytopathology, 2012, 102, 1086-1093.	1.1	27

#	Article	IF	CITATIONS
55	High Resolution Genetic and Physical Mapping of a Major Powdery Mildew Resistance Locus in Barley. Frontiers in Plant Science, 2019, 10, 146.	1.7	27
56	Host Status of False Brome Grass to the Leaf Rust Fungus Puccinia brachypodii and the Stripe Rust Fungus P. striiformis. Plant Disease, 2011, 95, 1339-1345.	0.7	26
57	Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theoretical and Applied Genetics, 2014, 127, 325-337.	1.8	25
58	Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome, 2002, 45, 460-466.	0.9	24
59	Specificity and levels of nonhost resistance to nonadapted <i>Blumeria graminis</i> forms in barley. New Phytologist, 2010, 185, 275-284.	3.5	24
60	Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL. Theoretical and Applied Genetics, 2018, 131, 1031-1045.	1.8	22
61	A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. BMC Plant Biology, 2017, 17, 232.	1.6	21
62	The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theoretical and Applied Genetics, 2010, 121, 857-864.	1.8	20
63	Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization. Theoretical and Applied Genetics, 2011, 122, 1375-1383.	1.8	20
64	Appresoorium formation of Puccinia hordei on partially resistant barley and two non-host species. European Journal of Plant Pathology, 1981, 87, 201-207.	0.5	19
65	Histological studies on the infection of triticale, wheat and rye byPuccinia recondita f.sp.tritici andP. recondita f.sp.recondita. Euphytica, 1987, 36, 275-285.	0.6	19
66	Host Range of Oidium lycopersici Occurring in the Netherlands. European Journal of Plant Pathology, 2000, 106, 465-473.	0.8	17
67	QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density. Theoretical and Applied Genetics, 2003, 106, 1283-1292.	1.8	17
68	Resistance to cereal rusts at the plant cell wall—what can we learn from other host-pathogen systems?. Australian Journal of Agricultural Research, 2007, 58, 476.	1.5	17
69	Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics, 2010, 11, 629.	1.2	17
70	Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up. Theoretical and Applied Genetics, 2014, 127, 1805-1816.	1.8	17
71	Patterns of Transmission Ratio Distortion in Interspecific Lettuce Hybrids Reveal a Sex-Independent Gametophytic Barrier. Genetics, 2019, 211, 263-276.	1.2	17
72	Effect of Germ Tube Length on the Fate of Sporelings of <i>Puccinia hordei</i> in Susceptible and Resistant Barley. Phytopathology, 1990, 80, 57.	1.1	17

#	Article	IF	CITATIONS
73	Abnormal germling development by brown rust and powdery mildew on cer barley mutants. Hereditas, 2004, 135, 271-276.	0.5	16
74	Histological responses in <i>Hordeum chilense</i> to brown and yellow rust fungi. Plant Pathology, 1992, 41, 611-617.	1.2	15
75	Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis. Journal of Plant Physiology, 2011, 168, 20-29.	1.6	15
76	Transgressive segregation for very low and high levels of basal resistance to powdery mildew in barley. Journal of Plant Physiology, 2011, 168, 45-50.	1.6	15
77	Resistance to parasites. , 1993, , 422-447.		15
78	The importance of abortive stoma penetration in the partial resistance and nonhost reaction of adult barley and wheat plants to leaf rust fungi. Euphytica, 1987, 36, 725-731.	0.6	14
79	Avoidance of leaf rust fungi in wild relatives of cultivated cereals. Euphytica, 1996, 87, 1-6.	0.6	14
80	High-Density Mapping of Triple Rust Resistance in Barley Using DArT-Seq Markers. Frontiers in Plant Science, 2019, 10, 467.	1.7	14
81	High Resolution Mapping of a Novel Late Blight Resistance Gene Rpi-avl1, from the Wild Bolivian Species Solanum avilesii. American Journal of Potato Research, 2011, 88, 511-519.	0.5	13
82	High-resolution mapping of the barley Ryd3 locus controlling tolerance to BYDV. Molecular Breeding, 2014, 33, 477-488.	1.0	13
83	Performance of spring barley (Hordeum vulgare) varieties under organic and conventional conditions. Euphytica, 2014, 197, 279-293.	0.6	13
84	Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley. Euphytica, 2015, 206, 487-499.	0.6	13
85	Morphological and molecular characterisation confirm that Triticum monococcum s.s. is resistant to wheat leaf rust. Theoretical and Applied Genetics, 2001, 103, 1093-1098.	1.8	12
86	Prospects for Exploitation of Disease Resistance from Hordeum Chilense in Cultivated Cereals. Hereditas, 2004, 135, 161-169.	0.5	12
87	Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection. Theoretical and Applied Genetics, 2013, 126, 2995-3007.	1.8	12
88	Induced Accessibility and Inaccessibility of Barley Cells in Seedling Leaves Inoculated with Two Leaf Rust Species. Journal of Phytopathology, 1989, 124, 296-308.	0.5	10
89	Histology of the infection of tritordeum and its parents by cereal brown rusts. Plant Pathology, 1993, 42, 93-99.	1.2	10
90	Search for Partial Resistance to Leaf Rust in a Collection of Ancient Spanish Wheats. Hereditas, 2004, 135, 193-197.	0.5	10

#	Article	IF	CITATIONS
91	High-Resolution Mapping of Two Broad-Spectrum Late Blight Resistance Genes from Two Wild Species of the Solanum circaeifolium Group. Potato Research, 2012, 55, 109-123.	1.2	10
92	Host status of barley to Puccinia coronata from couch grass and P. striiformis from wheat and brome. European Journal of Plant Pathology, 2013, 136, 393-405.	0.8	9
93	Bidirectional backcrosses between wild and cultivated lettuce identify loci involved in nonhost resistance to downy mildew. Theoretical and Applied Genetics, 2018, 131, 1761-1776.	1.8	9
94	Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphytica, 2019, 215, 1.	0.6	9
95	Partial Resistance to Leaf Rust in a Collection of Ancient Spanish Barleys. Hereditas, 2004, 135, 199-203.	0.5	8
96	Genome-wide analysis of the barley MAPK gene family and its expression patterns in relation to Puccinia hordei infection. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	8
97	Isolate Specificity and Polygenic Inheritance of Resistance in Barley to the Heterologous Rust Pathogen <i>Puccinia graminis</i> f. sp. <i>avenae</i> . Phytopathology, 2016, 106, 1029-1037.	1.1	8
98	Evaluation of morphology of infection structures in distinguishing between different Allium rust fungi. European Journal of Plant Pathology, 1993, 99, 139-149.	0.5	7
99	Compatible Puccinia hordei infection in barley induces basal defense to subsequent infection by Blumeria graminis. Physiological and Molecular Plant Pathology, 2012, 77, 17-22.	1.3	6
100	Haplotype divergence and multiple candidate genes at Rphq2, a partial resistance QTL of barley to Puccinia hordei. Theoretical and Applied Genetics, 2016, 129, 289-304.	1.8	6
101	Identification of a large-effect QTL associated with kernel discoloration in barley. Journal of Cereal Science, 2018, 84, 62-70.	1.8	6
102	The Abnormal Morphology of a Very Virulent Moroccan Isolate Belonging or Related to Puccinia hordei. Plant Disease, 1989, 73, 28.	0.7	6
103	Morphology of infection structures of puccinia striiformis var. dactylidis. European Journal of Plant Pathology, 1989, 95, 171-175.	0.5	5
104	The contribution of Hordeum chilense to partial resistance of tritordeum to wheat brown rust. Euphytica, 1992, 59, 129-133.	0.6	5
105	High-resolution mapping of genes involved in plant stage-specific partial resistance of barley to leaf rust. Molecular Breeding, 2017, 37, 45.	1.0	5
106	Application of a set of 14 c-DNA probes from wheat to detect restriction fragment length polymorphism (RFLP) in barley. Euphytica, 1991, 53, 115-119.	0.6	4
107	Comparison of Selection Efficiency for Spring Barley (<i>Hordeum vulgare</i> L.) under Organic and Conventional Farming Conditions. Crop Science, 2017, 57, 626-636.	0.8	3
108	Relative Ratio of Mature Pustules: A Simple Method to Assess Partial Resistance of Barley to Puccinia hordei. Plant Disease, 2007, 91, 301-307.	0.7	2

#	Article	IF	CITATIONS
109	First Report of Powdery Mildew (Oidium sp.) on Pincushion Flower (Scabiosa columbaria) in New York. Plant Disease, 2009, 93, 316-316.	0.7	1
110	Unraveling possible association between quantitative trait loci (QTL) for partial resistance and nonhost resistance in food barley (Hordeum vulgaris L.). African Journal of Biotechnology, 2016, 15, 2202-2208.	0.3	0