Sang Ook Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum dot photolithography using a quantum dot photoresist composed of an organic–inorganic hybrid coating layer. Nanoscale Advances, 2022, 4, 1080-1087.	4.6	20
2	InP-Quantum Dot Surface-Modified TiO ₂ Catalysts for Sustainable Photochemical Carbon Dioxide Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 6033-6044.	6.7	10
3	Tuning the Photophysical Properties of Homoleptic Tris-Cyclometalated Ir(III) Complexes by Facile Modification of the Imidazo-Phenanthridine and Their Application to Phosphorescent Organic Light-Emitting Diodes. ACS Omega, 2022, 7, 17234-17244.	3.5	5
4	Synthesis and Characterization of Blue Phosphorescent NHC-Ir(III) Complexes with Annulated Heterocyclic 1,2,4-Triazolophenanthridine Derivatives for Highly Efficient PhOLEDs. ACS Applied Electronic Materials, 2022, 4, 2699-2710.	4.3	7
5	Rapid Exciton Migration and Amplified Funneling Effects of Multi-Porphyrin Arrays in a Re(I)/Porphyrinic MOF Hybrid for Photocatalytic CO ₂ Reduction. ACS Applied Materials & amp; Interfaces, 2021, 13, 2710-2722.	8.0	58
6	Electron Injection Process of Porphyrin Dye into a Heterogeneous TiO2/Re(I) Photocatalyst. Journal of Physical Chemistry C, 2021, 125, 7625-7636.	3.1	6
7	Photochemical CO2-to-Formate/CO Conversion Catalyzed by Half-Metallocene Ir(III) Catalyst and Its Mechanistic Investigation. Organometallics, 2021, 40, 2430-2442.	2.3	4
8	A Hybrid Ru(II)/TiO ₂ Catalyst for Steadfast Photocatalytic CO ₂ to CO/Formate Conversion Following a Molecular Catalytic Route. Inorganic Chemistry, 2021, 60, 10235-10248.	4.0	11
9	Secondary Coordination Effect on Monobipyridyl Ru(II) Catalysts in Photochemical CO ₂ Reduction: Effective Proton Shuttle of Pendant BrÄ,nsted Acid/Base Sites (OH and) Tj ETQq1 1 0.784314 rgBT /C	verlock 10 4.0) Tf 50 422 T
10	Homoleptic cyclometalated dibenzothiophene–NHC–iridium(<scp>iii</scp>) complexes for efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 4062-4069.	5.5	15
11	Peripheral Ligand Effect on the Photophysical Property of Octahedral Iridium Complex: o-Aryl Substitution on the Phenyl Units of Homoleptic IrIII(Câ^§C)3 Complexes (Câ^§C =) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 4.0	Tf 50 342 Td
12	Inorganometallic Photocatalyst for CO ₂ Reduction. Accounts of Chemical Research, 2021, 54, 4530-4544.	15.6	57
13	Collisional Electron Transfer Route between Homogeneous Porphyrin Dye and Catalytic TiO ₂ /Re(I) Particles for CO ₂ Reduction. ACS Applied Energy Materials, 2020, 3, 11581-11596.	5.1	13
14	Ancillary Ligand Effects on Heteroleptic Ir ^{III} Dye in Dyeâ€6ensitized Photocatalytic CO ₂ Reduction: Photoaccumulation of Charges on Arylated Bipyridine Ligand and Its Control on Catalytic Performance. Chemistry - A European Journal, 2020, 26, 16733-16754.	3.3	16
15	Organometallic Iridium(III) Complex Sensitized Ternary Hybrid Photocatalyst for CO 2 to CO Conversion. Chemistry - A European Journal, 2019, 25, 13609-13623.	3.3	14
16	Utility of Squaraine Dyes for Dye-Sensitized Photocatalysis on Water or Carbon Dioxide Reduction. ACS Omega, 2019, 4, 14272-14283.	3.5	25
17	Triplet Energy Transfer between a Sacrificial PMP and Blue TPF2 Iridium Dopants Leading to Enhancement of OLED Device Performance. Journal of Physical Chemistry C, 2019, 123, 18771-18782.	3.1	6
18	Blue Phosphorescence with High Quantum Efficiency Engaging the Trifluoromethylsulfonyl Group to Iridium Phenylpyridine Complexes. Inorganic Chemistry, 2019, 58, 16112-16125.	4.0	12

SANG OOK KANG

#	Article	IF	CITATIONS
19	Highly Selective and Durable Photochemical CO ₂ Reduction by Molecular Mn(I) Catalyst Fixed on a Particular Dye-Sensitized TiO ₂ Platform. ACS Catalysis, 2019, 9, 2580-2593.	11.2	58
20	Solidâ€State Photochromism by Molecular Assembly of Bisâ€ <i>o</i> â€carboranyl Siloles. Chemistry - A European Journal, 2019, 25, 8149-8156.	3.3	6
21	Photophysical properties of structural isomers of homoleptic Ir-complexes derived from xylenyl-substituted N-heterocyclic carbene ligands. Physical Chemistry Chemical Physics, 2019, 21, 7155-7164.	2.8	14
22	Influence of bulky substituents on the photophysical properties of homoleptic iridium(<scp>iii</scp>) complexes. Physical Chemistry Chemical Physics, 2019, 21, 6908-6916.	2.8	9
23	Geometry and steric effects on the electronic states of aryl-o-carboranes. Journal of Organometallic Chemistry, 2018, 865, 152-158.	1.8	5
24	A Detailed Evaluation for the Nonradiative Processes in Highly Phosphorescent Iridium(III) Complexes. Journal of Physical Chemistry C, 2018, 122, 4029-4036.	3.1	16
25	Development of a Lower Energy Photosensitizer for Photocatalytic CO ₂ Reduction: Modification of Porphyrin Dye in Hybrid Catalyst System. ACS Catalysis, 2018, 8, 1018-1030.	11.2	84
26	Photoinduced Electron Transfer in a BODIPY- <i>ortho</i> -Carborane Dyad Investigated by Time-Resolved Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 3391-3397.	2.5	25
27	Comprehensive spectroscopic studies of cis and trans isomers of red-phosphorescent heteroleptic iridium(III) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 673-680.	3.9	12
28	Photoinduced electron and hole transfers in carbazole dendrimers with heteroleptic Ir-complex cores. Physical Chemistry Chemical Physics, 2018, 20, 27585-27591.	2.8	6
29	Constrained Geometry Main Group Metal Dicarbollide Complexes. , 2018, , 229-258.		0
30	Elucidation of Excited-State Properties of Bimetallic Ir(III)–Pt(II) Complexes with Conjugated Bridging Ligands. Journal of Physical Chemistry C, 2018, 122, 23288-23298.	3.1	1
31	Excitation spectroscopic and synchronous fluorescence spectroscopic analysis of the origin of aggregation-induced emission in <i>N</i> , <i>N</i> ,diphenyl-1-naphthylamine- <i>o</i> -carborane derivatives. Physical Chemistry Chemical Physics, 2018, 20, 17458-17463.	2.8	18
32	Facile Synthesis of Highly Crystalline and Large Areal Hexagonal Boron Nitride from Borazine Oligomers. Scientific Reports, 2017, 7, 40260.	3.3	7
33	Probing photophysical properties of isomeric N-heterocyclic carbene Ir(<scp>iii</scp>) complexes and their applications to deep-blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1651-1659.	5.5	35
34	Steric effect on excimer formation in planar Pt(<scp>ii</scp>) complexes. Physical Chemistry Chemical Physics, 2017, 19, 5486-5494.	2.8	26
35	The effect of interligand energy transfer on the emission spectra of heteroleptic Ir complexes. Physical Chemistry Chemical Physics, 2017, 19, 8778-8786.	2.8	19
36	Important role of ancillary ligand in the emission behaviours of blue-emitting heteroleptic Ir(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2017, 5, 4480-4487.	5.5	24

#	Article	IF	CITATIONS
37	Photophysics and Excited-State Properties of Cyclometalated Iridium(III)–Platinum(II) and Iridium(III)–Iridium(III) Bimetallic Complexes Bridged by Dipyridylpyrazine. Inorganic Chemistry, 2017, 56, 5305-5315.	4.0	18
38	Influence of ï€-conjugation structural changes on intramolecular charge transfer and photoinduced electron transfer in donor–ï€â€"acceptor dyads. Physical Chemistry Chemical Physics, 2017, 19, 426-435.	2.8	47
39	Widely Controllable Syngas Production by a Dyeâ€Sensitized TiO ₂ Hybrid System with Re ^I and Co ^{III} Catalysts under Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2017, 56, 976-980.	13.8	94
40	Widely Controllable Syngas Production by a Dyeâ€Sensitized TiO ₂ Hybrid System with Re ^I and Co ^{III} Catalysts under Visibleâ€Light Irradiation. Angewandte Chemie, 2017, 129, 996-1000.	2.0	25
41	Direct observation of the photoinduced electron transfer processes of bis(4-arylphenylamino) Tj ETQq1 1 0.7843 Chemical Physics, 2017, 19, 24485-24492.	14 rgBT / 2.8	Overlock 10 34
42	Photosensitization Behavior of Ir(III) Complexes in Selective Reduction of CO2 by Re(I)-Complex-Anchored TiO2 Hybrid Catalyst. Inorganic Chemistry, 2017, 56, 12042-12053.	4.0	43
43	Time-resolved spectroscopic analysis of the light-energy harvesting mechanism in carbazole-dendrimers with a blue-phosphorescent Ir-complex core. Physical Chemistry Chemical Physics, 2017, 19, 20093-20100.	2.8	9
44	A spectroscopic study on the satellite vibronic band in phosphorescent Pt-complexes with high colour purity. Physical Chemistry Chemical Physics, 2017, 19, 32670-32677.	2.8	17
45	Organic–inorganic hybrid photocatalyst for carbon dioxide reduction. Faraday Discussions, 2017, 198, 337-351.	3.2	27
46	Electronic alteration of end-on phenyl groups of bis-triazolyl-silanes: electron-transport materials for blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 4978-4987.	5.5	9
47	The influence of ï€-conjugation on competitive pathways: charge transfer or electron transfer in new D–π–A and D–π–Si–π–A dyads. Physical Chemistry Chemical Physics, 2016, 18, 22921-22928.	2.8	29
48	Ligand-to-ligand charge transfer in heteroleptic Ir-complexes: comprehensive investigations of its fast dynamics and mechanism. Physical Chemistry Chemical Physics, 2016, 18, 15162-15169.	2.8	33
49	Substituent position engineering of diphenylquinoline-based Ir(<scp>iii</scp>) complexes for efficient orange and white PhOLEDs with high color stability/low efficiency roll-off using a solution-processed emission layer. Journal of Materials Chemistry C, 2016, 4, 113-120.	5.5	24
50	Stable Blue Phosphorescence Iridium(III) Cyclometalated Complexes Prompted by Intramolecular Hydrogen Bond in Ancillary Ligand. Inorganic Chemistry, 2016, 55, 3324-3331.	4.0	44
51	Aggregation-induced emission of diarylamino-ï€-carborane triads: effects of charge transfer and ï€-conjugation. Physical Chemistry Chemical Physics, 2016, 18, 9702-9708.	2.8	72
52	Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface. Scientific Reports, 2015, 5, 11985.	3.3	40
53	Photochemistry of hybrid organic–inorganic triarylborane-o-carboranes. Journal of Organometallic Chemistry, 2015, 798, 245-251.	1.8	12
54	Electronic Alteration on Oligothiophenes by <i>o</i> -Carborane: Electron Acceptor Character of <i>o</i> -Carborane in Oligothiophene Frameworks with Dicyano-Vinyl End-On Group. Journal of Organic Chemistry, 2015, 80, 4573-4580.	3.2	34

SANG OOK KANG

#	Article	IF	CITATIONS
55	Intriguing emission properties of triphenylamine–carborane systems. Physical Chemistry Chemical Physics, 2015, 17, 15679-15682.	2.8	74
56	Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/TiO ₂ /Re(I) Organic–Inorganic Ternary Systems. Journal of the American Chemical Society, 2015, 137, 13679-13690.	13.7	139
57	BODIPY functionalized o-carborane dyads for low-energy photosensitization. Dalton Transactions, 2015, 44, 2780-2787.	3.3	32
58	Development of a solvent-free hydrogen storage and release system based on semi-solid-state ammonia borane (AB) fuel: high gravimetric capacity and feasibility for practical application. Journal of Materials Chemistry A, 2014, 2, 20243-20251.	10.3	4
59	Efficient Light Harvesting and Energy Transfer in a Red Phosphorescent Iridium Dendrimer. Inorganic Chemistry, 2014, 53, 13136-13141.	4.0	24
60	Carborane Dyads for Photoinduced Electron Transfer: Photophysical Studies on Carbazole and Phenylâ€≺i>o arborane Molecular Assemblies. Chemistry - A European Journal, 2014, 20, 5953-5960.	3.3	80
61	A detailed investigation of light-harvesting efficiency of blue color emitting divergent iridium dendrimers with peripheral phenylcarbazole units. Physical Chemistry Chemical Physics, 2014, 16, 4510-4521.	2.8	26
62	High-turnover visible-light photoreduction of CO ₂ by a Re(<scp>i</scp>) complex stabilized on dye-sensitized TiO ₂ . Chemical Communications, 2014, 50, 4462-4464.	4.1	62
63	Rational Design, Synthesis, and Characterization of Deep Blue Phosphorescent Ir(III) Complexes Containing (4′-Substituted-2′-pyridyl)-1,2,4-triazole Ancillary Ligands. Journal of Organic Chemistry, 2013, 78, 8054-8064.	3.2	53
64	Multiple Photoluminescence from 1,2â€Dinaphthylâ€ <i>ortho</i> â€Carborane. Angewandte Chemie - International Edition, 2013, 52, 9682-9685.	13.8	144
65	A three-dimensional π-electron acceptor, tri-phenyl-o-carborane, bearing a rigid conformation with end-on phenyl units. Chemical Communications, 2013, 49, 9398.	4.1	27
66	Efficient catalytic conversion of ammonia borane to borazine and its use for hexagonal boron nitride (white graphene). Journal of Materials Chemistry A, 2013, 1, 1976-1981.	10.3	40
67	Carborane-Based Optoelectronically Active Organic Molecules: Wide Band Gap Host Materials for Blue Phosphorescence. Journal of the American Chemical Society, 2012, 134, 17982-17990.	13.7	224
68	Hydrophilicity Control of Visibleâ€Light Hydrogen Evolution and Dynamics of the Chargeâ€Separated State in Dye/TiO ₂ /Pt Hybrid Systems. Chemistry - A European Journal, 2012, 18, 15368-15381.	3.3	50
69	Photodynamic Behavior of Heteroleptic Ir(III) Complexes with Carbazole-Functionalized Dendrons Associated with Efficient Electron Transfer Processes. Journal of Physical Chemistry C, 2012, 116, 1973-1986.	3.1	24
70	Carborane Photochemistry Triggered by Aryl Substitution: Carboraneâ€Based Dyads with Phenyl Carbazoles. Angewandte Chemie - International Edition, 2012, 51, 2677-2680.	13.8	216
71	Electronic Optimization of Heteroleptic Ru(II) Bipyridine Complexes by Remote Substituents: Synthesis, Characterization, and Application to Dye-Sensitized Solar Cells. Inorganic Chemistry, 2011, 50, 3271-3280.	4.0	51
72	Asymmetric anthracene-based blue host materials: synthesis and electroluminescence properties of 9-(2-naphthyl)-10-arylanthracenes. Journal of Materials Chemistry, 2011, 21, 1115-1123.	6.7	59

#	Article	IF	CITATIONS
73	On preference of insertion mechanism in the ethylene polymerization catalyzed by half-titanocene complexes with aryloxy ligands: Static and dynamic theoretical studies. Macromolecular Research, 2010, 18, 960-966.	2.4	5
74	Bimetallic Ethylene Tetramerization Catalysts Derived from Chiral DPPDME Ligands: Syntheses, Structural Characterizations, and Catalytic Performance of [(DPPDME)CrCl ₃] ₂ (DPPDME = <i>S</i> , <i>S</i> and) Tj ETQq0 0 0 rgBT /Overlock 10) T 1 ∵30 692	2 fd (<i>R</i>

75	Significance of Hydrophilic Characters of Organic Dyes in Visible-Light Hydrogen Generation Based on TiO ₂ . Organic Letters, 2010, 12, 460-463.	4.6	65
76	The effect of energy level offset between Ir dopant and carbazole hosts on the emission efficiency. Applied Physics Letters, 2010, 97, 023309.	3.3	7
77	Bis(4-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)phenyl)dimethylsilane as Electron-Transport Material for Deep Blue Phosphorescent OLEDs. Journal of Physical Chemistry Letters, 2010, 1, 295-299.	4.6	21
78	Phosphine-Catalyzed Siâ^'C Coupling of Bissilylmethanes: Preparation of Cyclic (Cl2SiCH2)2 and Linear Cl2Si(CH2SiCl3)2 via Silylene and Silene Intermediates. Organometallics, 2010, 29, 687-691.	2.3	10
79	New Types of Group 4 and 13 Metal Complexes Stabilized by Homo- or Hetero-Donor Functionalized Dicarbollide Ligands: Syntheses, Characterizations, and Structural Studies of [{î·5-C2B9H9(D)}(î·1-NMe2CH2)]M(NMe2)2 (D = CH2NMe2, PPh2; M = Ti, Zr) and [(î·1-D)(î·1-NMe2CH2)C2B9H101MMe2 (D = CH2NMe2, PPh2; M = Al, Ga), Organometallics, 2010, 29, 2348-2356	2.3	11
80	[Bu4P]+Clâ ^{°/} -Catalyzed Reactions of Trichlorosilane and Dichloromethylsilane with Vinyltrichlorosilane: New Synthetic Method for 1,1,4,4-Tetrachloro-2,5-bis(trichlorosilyl)-1,4-disilacyclohexane Compounds. Organometallics, 2010, 29, 3054-3057.	2.3	2
81	DENSITY FUNCTIONAL STUDY ON THE EFFECT OF ELECTRON WITHDRAWING SUBSTITUENT ON THE STABILITY OF RNHBH ₂ . International Journal of Nanoscience, 2009, 08, 53-56.	0.7	0
82	Systematic Electronic Control in Ambipolar Compounds Optimizes Their Photoluminescence Properties: Synthesis, Characterization, and Device Fabrication of Four-Coordinate Boron Compounds Containing anN,O-Chelating Oxazolylphenolate Ligand. European Journal of Inorganic Chemistry, 2009, 2009, 1503-1513.	2.0	26
83	Half-Metallocene Titanium(IV) Phenyl Phenoxide for High Temperature Olefin Polymerization: Ortho-Substituent Effect at Ancillary <i>o</i> -Phenoxy Ligand for Enhanced Catalytic Performance. Macromolecules, 2009, 42, 6932-6943.	4.8	31
84	Intermolecular peripheral 2,5-bipyridyl interactions by cyclization of 1,1′-silanylene unit of 2,3,4,5-aryl substituted siloles: enhanced thermal stability, high charge carrier mobility, and their application to electron transporting layers for OLEDs. Journal of Materials Chemistry, 2009, 19, 8964.	6.7	20
85	Structure–Catalytic Activity Relationship in Bridging Silacycloalkyl Ring Conformations of Constrained Geometry Titanium Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2214-2224.	2.0	7
86	Stepwise Cosensitization of Nanocrystalline TiO ₂ Films Utilizing Al ₂ O ₃ Layers in Dyeâ€&ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 8259-8263.	13.8	137
87	Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry, 2008, 32, 2233.	2.8	39
88	A polymer gel electrolyte to achieve ≥6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore. Journal of Materials Chemistry, 2008, 18, 5223.	6.7	136
89	Enhanced Charge-Carrier Mobility Derived from Cyclization of a Silanylene Unit on Dithienosiloles: Syntheses, Photophysical Properties, and Device Fabrication of Dithieno-spiro-siloles. Organometallics, 2008, 27, 2464-2473.	2.3	33
	Phenylene-Bridged Cp/Carboxamide Ligands for Titanium Complexes of Various Binding Modes and		

90Phenylene-Bridged Cp/Carboxamide Ligands for Titanium Complexes of Various Binding Modes and
Their Ethylene/1-Octene Copolymerization. Organometallics, 2006, 25, 5122-5130.2.320

Sang Ook Kang

#	Article	IF	CITATIONS
91	Electrochemical Depositon of End-Capped Triarylamine and CBP Dendrimers: Alternate Technique for the Fabrication of Organic Light-Emitting Devices. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
92	Dendritic Iridium(III)-Encapsulated Complexes for Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
93	Syntheses and Crystal Structures of Intramolecularly Stabilized Organo Aluminum, Gallium, and Indium Compounds Containing theC,P-Chelatingo-Carboranylphosphino Ligand [o-C2B10H10(CH2PMe2)-C,P]-(CabC,P). X-ray Structure of Pentacoordinated Group 13 Metal Complexes (CabC.P)2MX (M = Ga. In: X = Cl). Organometallics. 2005. 24. 5845-5852.	2.3	9
94	Stereoselective Hydroboration of Diynes and Triyne to Give Products Containing Multiple Vinylene Bridges:Â A Versatile Application to Fluorescent Dyes and Light-Emitting Copolymers. Organometallics, 2004, 23, 4569-4575.	2.3	27
95	Titanium Complexes Incorporating 1,1-Bis(tert-butylamido)-1-silacycloalkane Ligands:Â Generation of Alkyl Derivatives and Reactivity toward Molecular Oxygen. Organometallics, 2004, 23, 559-567.	2.3	22
96	Highly Efficient Hydrosilylation of Diyne and Triyne π-Electron Bridges:  Its Application to Fluorescent Dyes and Silylene-Spaced Vinylarene Compounds. Organometallics, 2004, 23, 4184-4191.	2.3	27
97	o-Carboranyl derivatives of 1,3,5-s-triazines: structures, properties andin vitro activities. Applied Organometallic Chemistry, 2003, 17, 539-548.	3.5	23
98	The first 1,3-digermyla-2-nickela-carboranylene and the Ni-catalyzed double germylation of unsaturated organic substrates. Chemical Communications, 2001, , 1730-1731.	4.1	14
99	Synthesis and reactivity of an efficient 1,2-dehydrocarborane precursor, phenyl[o-(trimethylsilyl)carboranyl]iodonium acetate. Chemical Communications, 2001, , 2110-2111.	4.1	61
100	Synthesis and Reactivity of Organotin Compounds Containing the C,P-Chelatingo-Carboranylphosphino Ligand [o-C2B10H10PPh2-C,P](CabC,P). X-ray Structures of (CabC,CH2P)SnMe2Br, [(CabC,P)SnMe2]2Pd, and [(CabC,P)SnMe2]Pd(PEt3)Cl. Organometallics, 2001, 20, 741-748.	2.3	45
101	Steric Influence on the Reactivity of the (o-Carboranedithiolato)iridium(III) Complex [Ir(η5-C5Me5)(η2-S2C2B10H10)]: New Types of Addition Reactions Involving Cyclometalation or Isomerizationâ€. Organometallics, 2000, 19, 1514-1521.	2.3	87
102	Synthesis and Double-Silylation Reactions of a P2PtSi2Complex Containing ano-Carboranylene. Organometallics, 2000, 19, 1216-1224.	2.3	45
103	New Types of Base-Stabilized Alkyl Aluminum, Gallium, and Indium Complexes. Organometallics, 2000, 19, 4036-4042.	2.3	26
104	A Bis(silyl)nickel Complex Containing an o-Carboranylene and Its Application in Facile Double Silylation of Alkynes and Alkenes. Organometallics, 2000, 19, 1722-1728.	2.3	39
105	Unusual Double Silylation Reaction of a PtSi2P2 Complex with an o-Carboranyl Unit. Organometallics, 1999, 18, 1818-1820.	2.3	36
106	New Class of Fischer-Type Carbene Complexes Containing ano-Carboranyl Substituent. Synthesis and Crystal Structure of (CO)5W[C(OMe)(PhC2B10H10)] and (CO)4(PhC2B10H10)Mn[C(OCH3)(CH3)]. Organometallics, 1998, 17, 1109-1115.	2.3	17
107	Thiosemicarbazone Complexes of Indium with New Modes of Coordination:Â X-ray Crystal Structure of {(Me2In)2[NC5H4CMeNNC(S)NC6H5]2}(InMe). Organometallics, 1997, 16, 4755-4758.	2.3	27
108	Synthesis and Characterization of New Trinuclear Aluminum and Gallium Complexes of Bis(thiosemicarbazones). Single-Crystal Structure of (MeAl){CH2[C(Me)NNC(S)N(Me)]2}(AlMe2)2. Organometallics, 1997, 16, 1503-1506.	2.3	14

#	Article	IF	CITATIONS
109	Unusual Coordination Chemistry of Organoaluminum and -gallium Complexes in N2S and NS Coordination Environments. Synthesis and Crystal Structure of (Me2Al)[NC5H4CMeNNC(S)NC3H7](AlMe2) and (Me2Ga)[PhMeCNNC(S)NPh](GaMe2). Organometallics, 1997. 16. 2110-2115.	2.3	21
110	Excited-state modulation via alteration of the heterocyclic moiety in 9,9-dimethylfluorene-based Ir(iii) phosphorescent dopants for blue PhOLEDs. Journal of Materials Chemistry C, 0, , .	5.5	9