## Sonia Ilieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268562/publications.pdf Version: 2024-02-01



SONIA LUEVA

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An Efficient Computational Approach for the Evaluation of Substituent Constants. Journal of<br>Organic Chemistry, 2006, 71, 6382-6387.                                                                                                                           | 3.2  | 105       |
| 2  | Computational Study of the Aminolysis of Esters. The Reaction of Methylformate with Ammonia.<br>Journal of Organic Chemistry, 2003, 68, 1496-1502.                                                                                                               | 3.2  | 87        |
| 3  | Electrostatic Potential at Atomic Sites as a Reactivity Descriptor for Hydrogen Bonding. Complexes of<br>Monosubstituted Acetylenes and Ammonia. Journal of Physical Chemistry A, 2002, 106, 11801-11805.                                                        | 2.5  | 75        |
| 4  | Predicting Reactivities of Organic Molecules. Theoretical and Experimental Studies on the Aminolysis of Phenyl Acetates. Journal of Physical Chemistry A, 2008, 112, 6700-6707.                                                                                  | 2.5  | 66        |
| 5  | QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines with anticancer activity. European<br>Journal of Medicinal Chemistry, 2007, 42, 1184-1192.                                                                                                 | 5.5  | 65        |
| 6  | Computational Study of the Reactivity ofN-Phenylacetamides in the Alkaline Hydrolysis Reaction.<br>Journal of Physical Chemistry A, 2004, 108, 11457-11462.                                                                                                      | 2.5  | 61        |
| 7  | Mechanism of the Aminolysis of Methyl Benzoate: A Computational Studyâ€. Journal of Physical<br>Chemistry A, 2005, 109, 11470-11474.                                                                                                                             | 2.5  | 41        |
| 8  | Experimental and theoretical study on the absorption and fluorescence properties of substituted aryl hydrazones of 1,8-naphthalimide. Physical Chemistry Chemical Physics, 2011, 13, 18530.                                                                      | 2.8  | 35        |
| 9  | Does the Molecular Electrostatic Potential Reflect the Effects of Substituents in Aromatic Systems?.<br>Chemistry - A European Journal, 2013, 19, 5149-5155.                                                                                                     | 3.3  | 35        |
| 10 | Atomic Charges in Describing Properties of Aromatic Molecules. Journal of Organic Chemistry, 2019,<br>84, 1908-1915.                                                                                                                                             | 3.2  | 35        |
| 11 | The mechanism of alkaline hydrolysis of amides: a comparative computational and experimental study<br>of the hydrolysis of <i>N</i> â€methylacetamide, <i>N</i> â€methylbenzamide, and acetanilide. Journal of<br>Physical Organic Chemistry, 2009, 22, 619-631. | 1.9  | 31        |
| 12 | Structure–reactivity relationships for aromatic molecules: electrostatic potentials at nuclei and electrophile affinity indices. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 37-55.                                               | 14.6 | 31        |
| 13 | Theory Supplemented by Experiment. Electronic Effects on the Rotational Stability of the Amide Group inp-Substituted Acetanilides. Journal of Organic Chemistry, 2002, 67, 6210-6215.                                                                            | 3.2  | 27        |
| 14 | Computational Study of the Aminolysis of 2-Benzoxazolinone. Journal of Organic Chemistry, 2003, 68, 3406-3412.                                                                                                                                                   | 3.2  | 27        |
| 15 | On the Origin of Higher Rotational Barriers in Thioamides than in Amides. Remote Substituent Effects<br>on the Conformational Stability of the Thioamide Group in Thioacetanilides. Journal of Physical<br>Chemistry A, 2003, 107, 5854-5861.                    | 2.5  | 26        |
| 16 | Communication: Energetics of reaction pathways for reactions of ethenol with the hydroxyl radical:<br>The importance of internal hydrogen bonding at the transition state. Journal of Chemical Physics,<br>2010, 133, 021102.                                    | 3.0  | 24        |
| 17 | Initiation of ring-opening polymerization of lactide: The effect of metal alkoxide catalyst.<br>Computational and Theoretical Chemistry, 2012, 995, 8-16.                                                                                                        | 2.5  | 24        |
| 18 | Aminolysis of Phenyl N-Phenylcarbamate via an Isocyanate Intermediate: Theory and Experiment.<br>Journal of Organic Chemistry, 2013, 78, 6440-6449.                                                                                                              | 3.2  | 23        |

Sonia Ilieva

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Experimental Measurement and Theory of Substituent Effects in π-Hydrogen Bonding: Complexes of<br>Substituted Phenols with Benzene. Journal of Organic Chemistry, 2014, 79, 6823-6831.                                  | 3.2  | 23        |
| 20 | Electrostatic potential at nuclei as a reactivity index in hydrogen bond formation. Complexes of<br>ammonia with C–H, N–H and O–H proton donor molecules. Computational and Theoretical Chemistry,<br>2003, 637, 73-80. | 1.5  | 20        |
| 21 | Do π-Conjugative Effects Facilitate SN2 Reactions?. Journal of the American Chemical Society, 2014, 136,<br>3118-3126.                                                                                                  | 13.7 | 20        |
| 22 | How an electric field can modulate the metal ion selectivity of protein binding sites: insights from DFT/PCM calculations. Physical Chemistry Chemical Physics, 2018, 20, 24633-24640.                                  | 2.8  | 19        |
| 23 | Ca2+/Sr2+ Selectivity in Calcium-Sensing Receptor (CaSR): Implications for Strontium's<br>Anti-Osteoporosis Effect. Biomolecules, 2021, 11, 1576.                                                                       | 4.0  | 19        |
| 24 | Reactivity of acetanilides in the alkaline hydrolysis reaction: theory vs. experiment. Molecular<br>Physics, 2009, 107, 1187-1192.                                                                                      | 1.7  | 15        |
| 25 | Computational study of the alkaline hydrolysis of acetanilide. Computational and Theoretical Chemistry, 2004, 681, 105-112.                                                                                             | 1.5  | 13        |
| 26 | Computational evaluation of σI and σR substituent constants. Journal of Molecular Structure, 2010, 976,<br>427-430.                                                                                                     | 3.6  | 13        |
| 27 | Computational study of the general base catalysed aminolysis of 2-benzoxazolinone. Computational and Theoretical Chemistry, 2003, 633, 49-55.                                                                           | 1.5  | 9         |
| 28 | Ab initio molecular orbital study of the conformation of amide group: o-methylformanilide. Journal of Molecular Structure, 1999, 476, 151-156.                                                                          | 3.6  | 8         |
| 29 | Electric field influence on the helical structure of peptides: insights from DFT/PCM computations.<br>Physical Chemistry Chemical Physics, 2019, 21, 16198-16206.                                                       | 2.8  | 8         |
| 30 | The origin of diastereoselectivity in the Michael addition reaction: a computational study of the<br>interaction between CH-acidic Schiff base and α,β-unsaturated ketones. Tetrahedron, 2010, 66, 5168-5172.           | 1.9  | 6         |
| 31 | Reactivity of phenyl <i>N</i> â€phenylcarbamates in the alkaline hydrolysis reaction. Journal of Physical<br>Organic Chemistry, 2011, 24, 1166-1171.                                                                    | 1.9  | 6         |
| 32 | Synthesis, structural analysis and application of a series of solid-state fluorochromes—aryl<br>hydrazones of 4-hydrazino-N-hexyl-1,8-naphthalimide. Tetrahedron, 2013, 69, 712-721.                                    | 1.9  | 6         |
| 33 | Quantitative Structure-Activity Relationship Analysis of the Substituent Effects on the Binding Affinity of Derivatives of Trimetazidine. Arzneimittelforschung, 2004, 54, 9-14.                                        | 0.4  | 5         |
| 34 | Theoretical Modeling of Absorption and Fluorescent Characteristics of Cyanine Dyes. Photochem, 2022, 2, 202-216.                                                                                                        | 2.2  | 5         |
| 35 | Creation of intensity theory in vibrational spectroscopy: Key role of ab initio quantum mechanical calculations. International Journal of Quantum Chemistry, 1998, 70, 331-339.                                         | 2.0  | 4         |
| 36 | Reactivity descriptors for the hydrogen bonding ability of aliphatic alcohols. Journal of Molecular<br>Structure, 2003, 657, 317-324.                                                                                   | 3.6  | 4         |

Sonia Ilieva

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assembly of New Merocyanine Chromophores with a 1,8-Naphthalimide Core by a New Method for the<br>Synthesis of the Methine Function. Australian Journal of Chemistry, 2015, 68, 1399.  | 0.9 | 4         |
| 38 | Conformation of some biologically active aromatic ureas. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 1321-1326.                                   | 3.9 | 3         |
| 39 | Hydrogen bonding probes electron density variations at the basic center in substituted alkyl benzoates: Theory and experiment. Journal of Physical Organic Chemistry, 2021, 34, e4258. | 1.9 | 3         |
| 40 | Hydrogen bonding as a probe of electron density Variations: Substituted pyridines. Chemical Physics<br>Letters, 2022, 791, 139378.                                                     | 2.6 | 3         |
| 41 | The nature of intramolecular interactions determining the Ïfâ^ constants for aromatic systems. Journal of Molecular Structure, 2012, 1023, 31-36.                                      | 3.6 | 2         |
| 42 | Mini-Review on Structure–Reactivity Relationship for Aromatic Molecules: Recent Advances. ACS<br>Omega, 2022, 7, 8199-8208.                                                            | 3.5 | 2         |
| 43 | Rationalizing IR intensities in terms of electronic parameters. Journal of Molecular Structure, 2012, 1009, 69-73.                                                                     | 3.6 | 1         |
| 44 | Electrostatic Potential at Nuclei. , 0, , 87-122.                                                                                                                                      |     | 0         |
| 45 | Electrostatic Potential at Nuclei. , 0, , 280-317.                                                                                                                                     |     | 0         |