Leonie M Quinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268530/publications.pdf Version: 2024-02-01

LEONIE M OLIINN

#	Article	IF	CITATIONS
1	Debcl, a Proapoptotic Bcl-2 Homologue, Is a Component of the Drosophila melanogaster Cell Death Machinery. Journal of Cell Biology, 2000, 148, 703-714.	5.2	161
2	An Essential Role for the Caspase Dronc in Developmentally Programmed Cell Death in Drosophila. Journal of Biological Chemistry, 2000, 275, 40416-40424.	3.4	137
3	Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO Journal, 2003, 22, 3568-3579.	7.8	121
4	DECAY, a Novel Drosophila Caspase Related to Mammalian Caspase-3 and Caspase-7. Journal of Biological Chemistry, 1999, 274, 30778-30783.	3.4	110
5	Characterization of the DrosophilaCaspase, DAMM. Journal of Biological Chemistry, 2001, 276, 25342-25350.	3.4	79
6	HOW Is Required for Stem Cell Maintenance in the Drosophila Testis and for the Onset of Transit-Amplifying Divisions. Cell Stem Cell, 2010, 6, 348-360.	11.1	44
7	The Ecdysone-inducible zinc-finger transcription factor Crol regulates Wg transcription and cell cycle progression in <i>Drosophila</i> . Development (Cambridge), 2008, 135, 2707-2716.	2.5	38
8	Drosophila Hfp negatively regulates dmyc and stg to inhibit cell proliferation. Development (Cambridge), 2004, 131, 1411-1423.	2.5	34
9	Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone. PLoS Genetics, 2011, 7, e1002408.	3.5	31
10	Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase AURKA Are Essential for Drosophila Brain Growth. Stem Cell Reports, 2017, 9, 32-41.	4.8	29
11	Hfp inhibits <i>Drosophila myc</i> transcription and cell growth in a TFIIH/Hay-dependent manner. Development (Cambridge), 2010, 137, 2875-2884.	2.5	28
12	Impact of steroid hormone signals on Drosophila cell cycle during development. Cell Division, 2009, 4, 3.	2.4	27
13	The Role of WD40-Repeat Protein 62 (MCPH2) in Brain Growth: Diverse Molecular and Cellular Mechanisms Required for Cortical Development. Molecular Neurobiology, 2018, 55, 5409-5424.	4.0	27
14	Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation. Cell Cycle, 2016, 15, 413-424.	2.6	26
15	The Novel Zinc Finger Protein dASCIZ Regulates Mitosis in <i>Drosophila</i> via an Essential Role in Dynein Light-Chain Expression. Genetics, 2014, 196, 443-453.	2.9	25
16	Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes, 2017, 8, 118.	2.4	25
17	Growth patterns in Onychophora (velvet worms): lack of a localised posterior proliferation zone. BMC Evolutionary Biology, 2010, 10, 339.	3.2	23
18	The Ecdysone receptor constrains wingless expression to pattern cell cycle across the Drosophilawing margin in a cyclin B-dependent manner. BMC Developmental Biology, 2013, 13, 28.	2.1	21

Leonie M Quinn

#	Article	IF	CITATIONS
19	Bcl-2 in Cell Cycle Regulation. Cell Cycle, 2004, 3, 6-8.	2.6	20
20	MYC in Brain Development and Cancer. International Journal of Molecular Sciences, 2020, 21, 7742.	4.1	20
21	Defining the essential function of FBP/KSRP proteins: <i>Drosophila</i> Psi interacts with the mediator complex to modulate <i>MYC</i> transcription and tissue growth. Nucleic Acids Research, 2016, 44, 7646-7658.	14.5	16
22	S6 Kinase is essential for MYC-dependent rDNA transcription in Drosophila. Cellular Signalling, 2015, 27, 2045-2053.	3.6	15
23	Rbf Regulates Drosophila Spermatogenesis via Control of Somatic Stem and Progenitor Cell Fate in the Larval Testis. Stem Cell Reports, 2016, 7, 1152-1163.	4.8	14
24	Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription. Gene, 2017, 612, 36-48.	2.2	14
25	Myc in Stem Cell Behaviour: Insights from Drosophila. Advances in Experimental Medicine and Biology, 2013, 786, 269-285.	1.6	14
26	Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nature Communications, 2015, 6, 7404.	12.8	13
27	A Kinome RNAi Screen in <i>Drosophila</i> Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues. G3: Genes, Genomes, Genetics, 2017, 7, 2497-2509.	1.8	12
28	New tricks for old dogs: unexpected roles for cell cycle regulators revealed using animal models. Current Opinion in Cell Biology, 2004, 16, 614-622.	5.4	11
29	FUBP/KH domain proteins in transcription: Back to the future. Transcription, 2017, 8, 185-192.	3.1	10
30	DNA Conformation Regulates Gene Expression: The <i>MYC</i> Promoter and Beyond. BioEssays, 2018, 40, e1700235.	2.5	9
31	Elevated levels of Drosophila Wdr62 promote glial cell growth and proliferation through AURKA signalling to AKT and MYC. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118713.	4.1	8
32	MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS Genetics, 2014, 01, 081-098.	1.9	8
33	Transcriptional repression of Myc underlies the tumour suppressor function of AGO1 in Drosophila. Development (Cambridge), 2020, 147, .	2.5	4
34	Hfp, the Drosophila homolog of the mammalian <i>c-myc</i> transcriptional-repressor and tumor suppressor FIR, inhibits <i>dmyc</i> transcription and cell growth. Fly, 2011, 5, 129-133.	1.7	3
35	Genetic Systems to Investigate Regulation of Oncogenes and Tumour Suppressor Genes in Drosophila. Cells, 2012, 1, 1182-1196.	4.1	1