Anna Orteu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268252/publications.pdf

Version: 2024-02-01

83 papers 8,113 citations

94433 37 h-index 78 g-index

101 all docs

101 docs citations

times ranked

101

7964 citing authors

#	Article	IF	Citations
1	A large deletion at the cortex locus eliminates butterfly wing patterning. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	6
2	Condition dependence in biosynthesized chemical defenses of an aposematic and mimetic <i>Heliconius</i> butterfly. Ecology and Evolution, 2022, 12, .	1.9	1
3	Phenotypic plasticity in chemical defence of butterflies allows usage of diverse host plants. Biology Letters, 2021, 17, 20200863.	2.3	12
4	A high-quality, chromosome-level genome assembly of the Black Soldier Fly (<i>Hermetia illucens</i>) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf
5	Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biology, 2021, 19, 94.	3.8	41
6	Population structure, adaptation and divergence of the meadow spittlebug, <i>Philaenus spumarius</i> (Hemiptera, Aphrophoridae), revealed by genomic and morphological data. PeerJ, 2021, 9, e11425.	2.0	9
7	Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
8	Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic <i>Heliconius</i> butterfly. Peerl, 2021, 9, e11523.	2.0	7
9	Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. ELife, $2021,10,.$	6.0	40
10	Genomics of altitudeâ€associated wing shape in two tropical butterflies. Molecular Ecology, 2021, 30, 6387-6402.	3.9	8
11	Insights into invasive species from wholeâ€genome resequencing. Molecular Ecology, 2021, 30, 6289-6308.	3.9	56
12	Identification and Composition of Clasper Scent Gland Components of the Butterfly <i>Heliconius erato</i> and Its Relation to Mimicry. ChemBioChem, 2021, 22, 3300-3313.	2.6	10
13	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	12.8	33
14	A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biology, 2021, 19, e3001022.	5.6	29
15	Clustering of loci controlling species differences in male chemical bouquets of sympatric <i>Heliconius</i> butterflies. Ecology and Evolution, 2021, 11, 89-107.	1.9	9
16	The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. Insect Biochemistry and Molecular Biology, 2020, 116, 103259.	2.7	17
17	A major locus controls a biologically active pheromone component in <i>Heliconius melpomene</i> Evolution; International Journal of Organic Evolution, 2020, 74, 349-364.	2.3	19
18	Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of <i>Heliconius</i> Mimicry. Genetics, 2020, 216, 765-780.	2.9	13

#	Article	IF	CITATIONS
19	Plasticity in flower size as an adaptation to variation in pollinator specificity. Ecological Entomology, 2020, 45, 1367-1372.	2.2	2
20	Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nature Communications, 2020, 11, 4763.	12.8	24
21	A haplotype-resolved, <i>de novo</i> genome assembly for the wood tiger moth (<i>Arctia) Tj ETQq1 1 0.784314</i>	rgBT /Ove	erlock 10 Tf 5
22	Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. Journal of Experimental Biology, 2020, 223, .	1.7	41
23	The genomics of coloration provides insights into adaptive evolution. Nature Reviews Genetics, 2020, 21, 461-475.	16.3	88
24	Divergence of chemosensing during the early stages of speciation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16438-16447.	7.1	25
25	Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biology, 2020, 18, e3000597.	5.6	60
26	Whole-chromosome hitchhiking driven by a male-killing endosymbiont. PLoS Biology, 2020, 18, e3000610.	5.6	44
27	Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Molecular Biology and Evolution, 2020, 37, 2568-2583.	8.9	64
28	Species specificity and intraspecific variation in the chemical profiles of <i>Heliconius</i> butterflies across a large geographic range. Ecology and Evolution, 2020, 10, 3895-3918.	1.9	31
29	Hybridization and transgressive exploration of colour pattern and wing morphology in <i>Heliconius</i> butterflies. Journal of Evolutionary Biology, 2020, 33, 942-956.	1.7	12
30	Peace in Colombia is a critical moment for Neotropical connectivity and conservation: Save the northern Andes–Amazon biodiversity bridge. Conservation Letters, 2019, 12, e12594.	5.7	46
31	Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo, 2019, 10, 15.	3.2	22
32	Genomic architecture and introgression shape a butterfly radiation. Science, 2019, 366, 594-599.	12.6	365
33	Altitude and lifeâ€history shape the evolution of <i>Heliconius</i> wings. Evolution; International Journal of Organic Evolution, 2019, 73, 2436-2450.	2.3	27
34	Can genomics shed light on the origin of species?. PLoS Biology, 2019, 17, e3000394.	5.6	9
35	Genetic dissection of assortative mating behavior. PLoS Biology, 2019, 17, e2005902.	5.6	79
36	Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biology, 2019, 17, e2006288.	5.6	253

#	Article	IF	CITATIONS
37	Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Current Biology, 2019, 29, 3996-4009.e4.	3.9	55
38	Male pheromone composition depends on larval but not adult diet in <i>Heliconius melpomene</i> Ecological Entomology, 2019, 44, 397-405.	2.2	35
39	Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fastâ€Z effect in <i>Heliconius</i> . Journal of Evolutionary Biology, 2019, 32, 194-204.	1.7	31
40	Suppression of <i>Wolbachia </i> -mediated male-killing in the butterfly <i>Hypolimnas bolina </i> involves a single genomic region. PeerJ, 2019, 7, e7677.	2.0	13
41	Patterns of Z chromosome divergence among <i>Heliconius</i> species highlight the importance of historical demography. Molecular Ecology, 2018, 27, 3852-3872.	3.9	69
42	patternize: An R package for quantifying colour pattern variation. Methods in Ecology and Evolution, 2018, 9, 390-398.	5.2	96
43	The appearance of mimetic <i>Heliconius</i> butterflies to predators and conspecifics. Evolution; International Journal of Organic Evolution, 2018, 72, 2156-2166.	2.3	33
44	Complex modular architecture around a simple toolkit of wing pattern genes. Nature Ecology and Evolution, 2017, 1, 52.	7.8	179
45	North Andean origin and diversification of the largest ithomiine butterfly genus. Scientific Reports, 2017, 7, 45966.	3.3	48
46	Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170744.	2.6	60
47	Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150485.	4.0	67
48	Interpreting the genomic landscape of introgression. Current Opinion in Genetics and Development, 2017, 47, 69-74.	3.3	186
49	Macroevolutionary shifts of <i>WntA</i> function potentiate butterfly wing-pattern diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10701-10706.	7.1	137
50	No evidence for maintenance of a sympatric <i>Heliconius </i> species barrier by chromosomal inversions. Evolution Letters, 2017, 1, 138-154.	3.3	90
51	The biology of color. Science, 2017, 357, .	12.6	509
52	Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Molecular Ecology, 2017, 26, 5160-5172.	3.9	70
53	Estimating the age of <i>Heliconius </i> butterflies from calibrated photographs. PeerJ, 2017, 5, e3821.	2.0	4
54	Male sex pheromone components in <i> Heliconius</i> butterflies released by the androconia affect female choice. PeerJ, 2017, 5, e3953.	2.0	79

#	Article	IF	CITATIONS
55	Assessing genotype-phenotype associations in three dorsal colour morphs in the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae) using genomic and transcriptomic resources. BMC Genetics, 2016, 17, 144.	2.7	14
56	Natural Selection and Genetic Diversity in the Butterfly <i>Heliconius melpomene</i> . Genetics, 2016, 203, 525-541.	2.9	94
57	Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Molecular Ecology, 2016, 25, 5765-5784.	3.9	52
58	Avoidance of an aposematically coloured butterfly by wild birds in a tropical forest. Ecological Entomology, 2016, 41, 627-632.	2.2	34
59	The transcriptome response of <i>Heliconius melpomene</i> larvae to a novel host plant. Molecular Ecology, 2016, 25, 4850-4865.	3.9	39
60	The gene cortex controls mimicry and crypsis in butterflies and moths. Nature, 2016, 534, 106-110.	27.8	212
61	Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies. BMC Genomics, 2016, 17, 254.	2.8	38
62	Major Improvements to the <i>Heliconius melpomene</i> Genome Assembly Used to Confirm 10 Chromosome Fusion Events in 6ÂMillion Years of Butterfly Evolution. G3: Genes, Genomes, Genetics, 2016, 6, 695-708.	1.8	149
63	A flamboyant behavioral polymorphism is controlled by a lethal supergene. Nature Genetics, 2016, 48, 7-8.	21.4	4
64	Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biology, 2016, 14, e1002353.	5.6	136
65	An introgressed wing pattern acts as a mating cue. Evolution; International Journal of Organic Evolution, 2015, 69, 1619-1629.	2.3	25
66	Estimation of the Spontaneous Mutation Rate in Heliconius melpomene. Molecular Biology and Evolution, 2015, 32, 239-243.	8.9	220
67	Sex Chromosome Dosage Compensation in <i>Heliconius</i> Butterflies: Global yet Still Incomplete?. Genome Biology and Evolution, 2015, 7, 2545-2559.	2.5	54
68	Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene. Insect Biochemistry and Molecular Biology, 2015, 63, 7-13.	2.7	24
69	Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. Systematic Biology, 2015, 64, 505-524.	5.6	204
70	Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci. Molecular Biology and Evolution, 2015, 32, 244-257.	8.9	532
71	Towards the identification of the loci of adaptive evolution. Methods in Ecology and Evolution, 2015, 6, 445-464.	5.2	115
72	The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly Hypolimnas bolina. PLoS Genetics, 2014, 10, e1004822.	3.5	27

#	Article	IF	CITATIONS
73	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	16.3	850
74	Population genomics of parallel hybrid zones in the mimetic butterflies, <i>H. melpomene</i> and <i>H. erato</i> . Genome Research, 2014, 24, 1316-1333.	5.5	114
75	Comparative genomics of the mimicry switch in <i>Papilio dardanus</i> . Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140465.	2.6	40
76	Radiating genomes. Nature, 2014, 513, 318-319.	27.8	3
77	Diversification of complex butterfly wing patterns by repeated regulatory evolution of a <i>Wnt</i> ligand. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12632-12637.	7.1	244
78	Evaluating female remating rates in light of spermatophore degradation in ⟨i⟩Heliconius⟨/i⟩ butterflies: pupalâ€mating monandry versus adultâ€mating polyandry. Ecological Entomology, 2012, 37, 257-268.	2.2	37
79	<i>optix</i> Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry. Science, 2011, 333, 1137-1141.	12.6	431
80	Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature, 2011, 477, 203-206.	27.8	509
81	Hybrid trait speciation and <i>Heliconius </i> butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3047-3054.	4.0	108
82	Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biological Journal of the Linnean Society, 2007, 92, 221-239.	1.6	138
83	Phylogenetic Discordance at the Species Boundary: Comparative Gene Genealogies Among Rapidly Radiating Heliconius Butterflies. Molecular Biology and Evolution, 2002, 19, 2176-2190.	8.9	156