Stephen E Grasby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4267943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extensive jarosite deposits formed through auto-combustion and weathering of pyritiferous mudstone, Smoking Hills (Ingniryuat), Northwest Territories, Canadian Arctic – A potential Mars analogue. Chemical Geology, 2022, 587, 120634.	3.3	7
2	Volcanismâ€Triggered Climatic Control on Late Cretaceous Oceans. Geochemistry, Geophysics, Geosystems, 2022, 23, e2021GC010292.	2.5	5
3	Microbial Functional Diversity Correlates with Species Diversity along a Temperature Gradient. MSystems, 2022, 7, e0099121.	3.8	14
4	Environmental crises at the Permian–Triassic mass extinction. Nature Reviews Earth & Environment, 2022, 3, 197-214.	29.7	78
5	Deccan volcanic activity and its links to the end-Cretaceous extinction in northern China. Global and Planetary Change, 2022, 210, 103772.	3.5	7
6	Sulfur- and Iron-Rich Mineralogical Features Preserved in Permafrost in the Canadian High Arctic: Analogs for the Astrobiological Exploration of Mars. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	1
7	Climate/ocean dynamics and possible atmospheric mercury depletion events during the Late Sturtian deglaciation. Chemical Geology, 2022, 598, 120830.	3.3	4
8	Global Hg cycle over Ediacaran–Cambrian transition and its implications for environmental and biological evolution. Earth and Planetary Science Letters, 2022, 587, 117551.	4.4	11
9	lsotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria. Global and Planetary Change, 2022, 215, 103881.	3.5	2
10	Mercury anomalies across the Cryogenian-Ediacaran boundary in South China. Precambrian Research, 2022, 379, 106771.	2.7	2
11	Major volcanic eruptions linked to the Late Ordovician mass extinction: Evidence from mercury enrichment and Hg isotopes. Global and Planetary Change, 2021, 196, 103374.	3.5	26
12	Integrated bio-chemostratigraphy of Lower and Middle Triassic marine successions at Spiti in the Indian Himalaya: Implications for the Early Triassic nutrient crisis. Global and Planetary Change, 2021, 196, 103363.	3.5	24
13	Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin. Energies, 2021, 14, 706.	3.1	9
14	Mercury Evidence of Intense Volcanism Preceded Oceanic Anoxic Event 1d. Geophysical Research Letters, 2021, 48, e2020GL091508.	4.0	18
15	Nickel isotopes link Siberian Traps aerosol particles to the end-Permian mass extinction. Nature Communications, 2021, 12, 2024.	12.8	10
16	Mercury record of intense hydrothermal activity during the early Cambrian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 568, 110294.	2.3	15
17	Cryogenian interglacial greenhouse driven by enhanced volcanism: Evidence from mercury records. Earth and Planetary Science Letters, 2021, 564, 116902.	4.4	20
18	Characteristics of Hg concentrations and isotopes in terrestrial and marine facies across the end-Permian mass extinction. Global and Planetary Change, 2021, 205, 103592.	3.5	11

#	Article	IF	CITATIONS
19	Closed-loop geothermal energy recovery from deep high enthalpy systems. Renewable Energy, 2021, 177, 976-991.	8.9	23
20	New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada. Bulletin of the Geological Society of America, 2021, 133, 1695-1711.	3.3	23
21	Determining the Lifespan of Hydrothermal Systems Using Thermochronology and Thermal Modeling. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006286.	2.8	4
22	GAL08, an Uncultivated Group of Acidobacteria, Is a Dominant Bacterial Clade in a Neutral Hot Spring. Frontiers in Microbiology, 2021, 12, 787651.	3.5	1
23	Global warming leads to Early Triassic nutrient stress across northern Pangea. Bulletin of the Geological Society of America, 2020, 132, 943-954.	3.3	24
24	Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada. Bulletin of the Geological Society of America, 2020, 132, 918-930.	3.3	9
25	Microbial Metabolic Redundancy Is a Key Mechanism in a Sulfur-Rich Glacial Ecosystem. MSystems, 2020, 5, .	3.8	17
26	Tellurium in Late Permianâ€Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009064.	2.5	6
27	The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic) Tj ETQq1 1 2020, 132, 931-942.	0.784314 r 3.3	gBT /Overloc 28
28	Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 2020, 48, 777-781.	4.4	75
29	Ecological and genomic analyses of candidate phylum <scp>WPS</scp> â€2 bacteria in an unvegetated soil. Environmental Microbiology, 2020, 22, 3143-3157.	3.8	42
30	Toxic mercury pulses into late Permian terrestrial and marine environments. Geology, 2020, 48, 830-833.	4.4	60
31	Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology, 2020, 48, 986-991.	4.4	25
32	Heat transition for major communities supported by geothermal energy development of the Alberta Basin, Canada. Geothermics, 2020, 88, 101883.	3.4	13
33	Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology, 2020, 48, 288-292.	4.4	69
34	Anomalous fractionation of mercury isotopes in the Late Archean atmosphere. Nature Communications, 2020, 11, 1709.	12.8	52
35	Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval. Chemical Geology, 2019, 529, 119313.	3.3	13
36	Seismic induced flow disruption of Gandll K'in Gwaay.yaay thermal springs, Gwaii Haanas National Park Reserve, Canada. Applied Geochemistry, 2019, 103, 118-130.	3.0	5

#	Article	IF	CITATIONS
37	Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews, 2019, 196, 102880.	9.1	232
38	Global mercury cycle during the end-Permian mass extinction and subsequent Early Triassic recovery. Earth and Planetary Science Letters, 2019, 513, 144-155.	4.4	72
39	Limited freshwater cap in the Eocene Arctic Ocean. Scientific Reports, 2019, 9, 4226.	3.3	2
40	Deep geothermal energy in Canadian sedimentary basins VS. Fossils based energy we try to replace – Exergy [KJ/KG] compared. Renewable Energy, 2019, 141, 259-277.	8.9	17
41	Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 2019, 507, 62-72.	4.4	146
42	Salt dissolution and permeability in the Western Canada Sedimentary Basin. Hydrogeology Journal, 2019, 27, 161-170.	2.1	3
43	Insights into contaminant transport from unconventional oil and gas developments from analog system analysis of methane-bearing thermal springs in the northern Canadian Rocky Mountains. Hydrogeology Journal, 2018, 26, 481-493.	2.1	3
44	Sequence stratigraphy, basin morphology and sea-level history for the Permian Kapp Starostin Formation of Svalbard, Norway. Geological Magazine, 2018, 155, 1023-1039.	1.5	8
45	Influence of saline groundwater discharge on river water chemistry in the Athabasca oil sands region – A chloride stable isotope and mass balance approach. Applied Geochemistry, 2018, 89, 75-85.	3.0	12
46	Geological controls on the present temperature field of the western Sverdrup Basin, Canadian Arctic Archipelago. Basin Research, 2018, 30, 479-496.	2.7	2
47	Low-Temperature Sulfidic-Ice Microbial Communities, Borup Fiord Pass, Canadian High Arctic. Frontiers in Microbiology, 2018, 9, 1622.	3.5	10
48	Analysis of microbial communities in natural halite springs reveals a domainâ€dependent relationship of species diversity to osmotic stress. Environmental Microbiology Reports, 2018, 10, 695-703.	2.4	10
49	Groundwater contribution keeps trophic status low in Sylvan Lake, Alberta, Canada. Canadian Water Resources Journal, 2018, 43, 366-381.	1.2	Ο
50	The Persistence of Brines in Sedimentary Basins. Geophysical Research Letters, 2018, 45, 4851-4858.	4.0	54
51	Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments. Earth and Planetary Science Letters, 2018, 496, 159-167.	4.4	103
52	Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. Bulletin of the Geological Society of America, 2017, 129, 771-787.	3.3	47
53	Low-temperature formation and stabilization of rare allotropes of cyclooctasulfur (β-S8 and γ-S8) in the presence of organic carbon at a sulfur-rich glacial site in the Canadian High Arctic. Geochimica Et Cosmochimica Acta, 2017, 200, 218-231.	3.9	31
54	Deep Groundwater Circulation through Gas Shales in Mountain Belts. Procedia Earth and Planetary Science, 2017, 17, 532-533.	0.6	4

#	Article	IF	CITATIONS
55	Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. Bulletin of the Geological Society of America, 2017, 129, 788-805.	3.3	17
56	Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction. Scientific Reports, 2017, 7, 5304.	3.3	82
57	Late Paleocene-middle Eocene hydrocarbon source rock potential in the Arctic Beaufort-Mackenzie Basin. Marine and Petroleum Geology, 2017, 86, 1082-1091.	3.3	8
58	Isotopic signatures of mercury contamination in latest Permian oceans. Geology, 2017, 45, 55-58.	4.4	186
59	On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478, 3-29.	2.3	349
60	Actinocrinis puniceicyclus gen. nov., sp. nov., an actinobacterium isolated from an acidic spring. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 602-609.	1.7	10
61	Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geological Magazine, 2016, 153, 316-331.	1.5	78
62	Deep groundwater circulation and associated methane leakage in the northern Canadian Rocky Mountains. Applied Geochemistry, 2016, 68, 10-18.	3.0	21
63	Early Triassic productivity crises delayed recovery from world's worst mass extinction. Geology, 2016, 44, 779-782.	4.4	86
64	Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian) Tj ETQq0 0 0 rgBT	/Overlock 1.5	10 Tf 50 382 141
65	Microbial consortia controlling biogenic gas formation in the Qaidam Basin of western China. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2296-2309.	3.0	5
66	Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications, 2016, 7, 10476.	12.8	189
67	Reply to Ryan etÂal. comment on "Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario― Applied Geochemistry, 2015, 63, 446-450.	3.0	3
68	Latest Permian chars may derive from wildfires, not coal combustion: COMMENT. Geology, 2015, 43, e358-e358.	4.4	0
69	Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Frontiers in Microbiology, 2015, 6, 897.	3.5	27
70	The effect of long-term regional pumping on hydrochemistry and dissolved gas content in an undeveloped shale-gas-bearing aquifer in southwestern Ontario, Canada. Hydrogeology Journal, 2015, 23, 719-739.	2.1	20
71	Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada. Applied Geochemistry, 2015, 61, 132-145.	3.0	42
72	An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Bulletin of the Geological Society of America, 2015, 127, 1411-1421.	3.3	87

#	Article	IF	CITATIONS
73	Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Bulletin of the Geological Society of America, 2015, 127, 1331-1347.	3.3	98
74	High amplitude redox changes in the late Early Triassic of South China and the Smithian–Spathian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 427, 62-78.	2.3	56
75	Stable-Isotope Probing Identifies Uncultured Planctomycetes as Primary Degraders of a Complex Heteropolysaccharide in Soil. Applied and Environmental Microbiology, 2015, 81, 4607-4615.	3.1	88
76	Contaminants in Marine Sedimentary Deposits from Coal Fly Ash During the Latest Permian Extinction. Developments in Paleoenvironmental Research, 2015, , 89-99.	8.0	5
77	Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario, Canada. Applied Geochemistry, 2014, 50, 37-52.	3.0	60
78	Geothermal Energy for Northern Canada: Is it Economical?. Natural Resources Research, 2014, 23, 159-173.	4.7	24
79	Reconstructing river discharge trends from climate variables and prediction of future trends. Journal of Hydrology, 2014, 511, 267-278.	5.4	25
80	The geothermal potential of the basal clastics of Saskatchewan, Canada. Hydrogeology Journal, 2014, 22, 143-150.	2.1	13
81	Distribution and diversity of <scp><i>V</i></scp> <i>errucomicrobia</i> methanotrophs in geothermal and acidic environments. Environmental Microbiology, 2014, 16, 1867-1878.	3.8	132
82	Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments. ISME Journal, 2014, 8, 1166-1174.	9.8	186
83	Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS Microbiology Ecology, 2014, 90, 92-102.	2.7	26
84	Gas hydrate contribution to Late Permian global warming. Earth and Planetary Science Letters, 2014, 393, 243-253.	4.4	23
85	Deep groundwater circulation through the High Arctic cryosphere forms Mars-like gullies. Geology, 2014, 42, 651-654.	4.4	20
86	Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology, 2013, 41, 967-970.	4.4	59
87	A hypersaline spring analogue in Manitoba, Canada for potential ancient spring deposits on Mars. Icarus, 2013, 224, 399-412.	2.5	9
88	Controls on biogenic gas formation in the Qaidam Basin, northwestern China. Chemical Geology, 2013, 335, 36-47.	3.3	26
89	The Paint Pots, Kootenay National Park, Canada— a natural acid spring analogue for Mars. Canadian Journal of Earth Sciences, 2013, 50, 94-108.	1.3	36
90	Mercury deposition through the Permo–Triassic Biotic Crisis. Chemical Geology, 2013, 351, 209-216.	3.3	149

#	Article	IF	CITATIONS
91	Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic. Geochimica Et Cosmochimica Acta, 2013, 110, 13-28.	3.9	22
92	Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada. Geology, 2013, 41, 167-170.	4.4	30
93	Recurrent Early Triassic ocean anoxia. Geology, 2013, 41, 175-178.	4.4	152
94	Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Frontiers in Microbiology, 2013, 4, 63.	3.5	42
95	Latest Permian mercury anomalies. Geology, 2012, 40, 63-66.	4.4	278
96	Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352, 73-90.	2.3	58
97	The stress regime of the Western Canadian Sedimentary Basin. Geofluids, 2012, 12, 150-165.	0.7	46
98	The Buday'ah Formation, Sultanate of Oman: A Middle Permian to Early Triassic oceanic record of the Neotethys and the late Induan microsphere bloom. Journal of Asian Earth Sciences, 2012, 43, 130-144.	2.3	39
99	Sulfuric Acid Speleogenesis Associated with a Glacially Driven Groundwater System—Paleo-spring "Pipes―at Borup Fiord Pass, Nunavut. Astrobiology, 2012, 12, 19-28.	3.0	21
100	Formation water geochemistry of the Sverdrup Basin: Implications for hydrocarbon development in the High Arctic. Applied Geochemistry, 2012, 27, 1623-1632.	3.0	20
101	Biosignature Detection at an Arctic Analog to Europa. Astrobiology, 2012, 12, 135-150.	3.0	47
102	Bioenergetics of microbial sulfur-redox reactions in a glacial environment. Applied Geochemistry, 2011, 26, S323.	3.0	1
103	Low temperature S0 biomineralization at a supraglacial spring system in the Canadian High Arctic. Geobiology, 2011, 9, 360-375.	2.4	38
104	Geological controls on regional transmissivity anisotropy. Geofluids, 2011, 11, 228-241.	0.7	4
105	Thermal springs and heat flow in North America. Geofluids, 2011, 11, 294-301.	0.7	22
106	Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 2011, 4, 104-107.	12.9	174
107	Spectral reflectance properties of carbonates from terrestrial analogue environments: Implications for Mars. Planetary and Space Science, 2010, 58, 522-537.	1.7	18
108	Hydrogeological implications of paleo-fluvial architecture for the Paskapoo Formation, SW Alberta, Canada: a stochastic analysis. Hydrogeology Journal, 2010, 18, 1375-1390.	2.1	18

#	Article	IF	CITATIONS
109	High Potential Regions for Enhanced Geothermal Systems in Canada. Natural Resources Research, 2010, 19, 177-188.	4.7	34
110	Characterization of a sulfur-rich Arctic spring site and field analog to Europa using hyperspectral data. Remote Sensing of Environment, 2010, 114, 1297-1311.	11.0	38
111	Heat flow, depth–temperature variations and stored thermal energy for enhanced geothermal systems in Canada. Journal of Geophysics and Engineering, 2010, 7, 232-241.	1.4	56
112	Pore pressure patterns in Tertiary successions and hydrodynamic implications, Beaufort-Mackenzie Basin, Canada. Bullentin of Canadian Petroleum Geology, 2010, 58, 3-16.	0.3	4
113	Influence of till provenance on regional groundwater geochemistry. Chemical Geology, 2010, 273, 225-237.	3.3	27
114	Late Permian Sedimentation in the Sverdrup Basin, Canadian Arctic: The Lindstrom and Black Stripe Formations. Bullentin of Canadian Petroleum Geology, 2009, 57, 167-191.	0.3	54
115	Silica Chimneys Formed by Low-Temperature Brine Spring Discharge. Astrobiology, 2009, 9, 931-941.	3.0	10
116	An approach for predicting groundwater recharge in mountainous watersheds. Journal of Hydrology, 2009, 365, 156-172.	5.4	45
117	Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrology, 2009, 365, 122-133.	5.4	79
118	Estimation of Shallow Geothermal Energy Resource in Canada: Heat Gain and Heat Sink. Natural Resources Research, 2009, 18, 95-108.	4.7	32
119	What do aqueous geothermometers really tell us?. Geofluids, 2009, 9, 39-48.	0.7	34
120	Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada. Chemical Geology, 2009, 264, 232-246.	3.3	87
121	Evidence for deep anaerobic biodegradation associated with rapid sedimentation and burial in the Beaufort–Mackenzie basin, Canada. Applied Geochemistry, 2009, 24, 536-542.	3.0	22
122	Spring water trace element geochemistry: A tool for resource assessment and reconnaissance mineral exploration. Applied Geochemistry, 2008, 23, 3561-3578.	3.0	25
123	Intrabasin variability of the carbon-isotope record across the Permian–Triassic transition, Sverdrup Basin, Arctic Canada. Chemical Geology, 2008, 253, 141-150.	3.3	69
124	Regional characterization of the Paskapoo bedrock aquifer system, southern AlbertaGeological Survey of Canada Contribution 2008-0479 Canadian Journal of Earth Sciences, 2008, 45, 1501-1516.	1.3	62
125	Hydrocarbon migration detected by regional temperature field variations, Beaufort-Mackenzie Basin, Canada. AAPG Bulletin, 2008, 92, 1639-1653.	1.5	14
126	Biogeochemistry of Hypersaline Springs Supporting a Mid-Continent Marine Ecosystem: An Analogue for Martian Springs?. Astrobiology, 2007, 7, 662-683.	3.0	29

#	Article	IF	CITATIONS
127	Extreme Environment Analogue Studies Part I. Astrobiology, 2007, 7, 644-644.	3.0	Ο
128	Hydrogeology of the Winnipeg Formation in Manitoba, Canada. Hydrogeology Journal, 2007, 15, 573-587.	2.1	41
129	Silica â€~chimneys' related to paleo-brine discharge from the Williston Basin. Journal of Geochemical Exploration, 2006, 89, 149-152.	3.2	3
130	Hydrocarbons and water in the Western Canada Sedimentary Basin — A tale of two fluids. Journal of Geochemical Exploration, 2006, 89, 112-114.	3.2	5
131	Historical climate and stream flow trends and future water demand analysis in the Calgary region, Canada. Water Science and Technology, 2006, 53, 1-11.	2.5	16
132	Subglacial recharge into the Western Canada Sedimentary Basin—Impact of Pleistocene glaciation on basin hydrodynamics. Bulletin of the Geological Society of America, 2005, 117, 500.	3.3	128
133	Identification of a Marine Green Alga Percursaria percursa from Hypersaline Springs in the Middle of the North American Continent. Canadian Field-Naturalist, 2005, 119, 82.	0.1	13
134	Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. Journal of Hydrology, 2004, 290, 43-62.	5.4	179
135	Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochimica Et Cosmochimica Acta, 2003, 67, 1659-1666.	3.9	106
136	Biogeochemical sulphur cycle in an extreme environment—lifebeneath a high arctic glacier, Nunavut, Canada. Journal of Geochemical Exploration, 2003, 78-79, 71-74.	3.2	4
137	Travertine mounds of the Cave and Basin National Historic Site, Banff National Park. Canadian Journal of Earth Sciences, 2003, 40, 1501-1513.	1.3	15
138	Supraglacial Sulfur Springs and Associated Biological Activity in the Canadian High Arctic—Signs of Life Beneath the Ice. Astrobiology, 2003, 3, 583-596.	3.0	70
139	Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Canadian Journal of Earth Sciences, 2002, 39, 1053-1063.	1.3	62
140	Physical and chemical properties of the Sulphur Mountain thermal springs, Banff National Park, and implications for endangered snails. Canadian Journal of Earth Sciences, 2002, 39, 1349-1361.	1.3	21
141	Predicting average annual groundwater levels from climatic variables: an empirical model. Journal of Hydrology, 2002, 260, 102-117.	5.4	112
142	Controls on the distribution of thermal springs in the southern Canadian Cordillera. Canadian Journal of Earth Sciences, 2001, 38, 427-440.	1.3	77
143	Pleistocene recharge and flow reversal in the Williston basin, central North America. Journal of Geochemical Exploration, 2000, 69-70, 403-407.	3.2	17
144	Chemical dynamics and weathering rates of a carbonate basin Bow River, southern Alberta. Applied Geochemistry, 2000, 15, 67-77.	3.0	40

#	Article	IF	CITATIONS
145	The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Applied Geochemistry, 2000, 15, 439-454.	3.0	71
146	Surface-water–groundwater interaction and the influence of ion exchange reactions on river chemistry. Geology, 1999, 27, 223.	4.4	40
147	Application of the stable isotope composition of S04 to tracing anomalous TDS in Nose Creek, southern Alberta, Canada. Applied Geochemistry, 1997, 12, 567-575.	3.0	41