Pierre van der Bruggen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4267928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protocol to assess the suppression of T-cell proliferation by human MDSC. Methods in Enzymology, 2020, 632, 155-192.	1.0	18
2	Reverse immunology: From peptide sequence to tumor-killing human T-cell clones. Methods in Enzymology, 2020, 631, 159-194.	1.0	2
3	A Genetic Vaccine Encoding Shared Cancer Neoantigens to Treat Tumors with Microsatellite Instability. Cancer Research, 2020, 80, 3972-3982.	0.9	51
4	How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunology, Immunotherapy, 2019, 68, 631-644.	4.2	110
5	The Vacuolar Pathway of Long Peptide Cross-Presentation Can Be TAP Dependent. Journal of Immunology, 2019, 202, 451-459.	0.8	19
6	Propeptide glycosylation and galectinâ€3 binding decrease proteolytic activation of human pro <scp>MMP</scp> â€9/progelatinase B. FEBS Journal, 2019, 286, 930-945.	4.7	7
7	Expression and prognostic relevance of MAGE-A3 and MAGE-C2 in non-small cell lung cancer. Oncology Letters, 2017, 13, 1609-1618.	1.8	36
8	Treatment of Patients With Metastatic Cancer Using a Major Histocompatibility Complex Class II–Restricted T-Cell Receptor Targeting the Cancer Germline Antigen MAGE-A3. Journal of Clinical Oncology, 2017, 35, 3322-3329.	1.6	204
9	<scp>CD</scp> 8 Tâ€cell responses against the immunodominant <i>Theileria parva</i> peptide Tp2 _{49–59} are composed of two distinct populations specific for overlapping 11â€mer and 10â€mer epitopes. Immunology, 2016, 149, 172-185.	4.4	9
10	Long-Peptide Cross-Presentation by Human Dendritic Cells Occurs in Vacuoles by Peptide Exchange on Nascent MHC Class I Molecules. Journal of Immunology, 2016, 196, 1711-1720.	0.8	40
11	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
12	Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nature Biotechnology, 2015, 33, 402-407.	17.5	85
13	Sugars boost exhausted tumor-infiltrating lymphocytes by counteracting immunosuppressive activities of galectins. Oncolmmunology, 2014, 3, e28783.	4.6	7
14	A Short Treatment with Galactomannan GM-CT-01 Corrects the Functions of Freshly Isolated Human Tumor–Infiltrating Lymphocytes. Clinical Cancer Research, 2014, 20, 1823-1833.	7.0	57
15	Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews Cancer, 2014, 14, 135-146.	28.4	925
16	Absence of recognition of common melanocytic antigens by T cells isolated from the cerebrospinal fluid of a Vogt-Koyanagi-Harada patient. Molecular Vision, 2014, 20, 956-69.	1.1	9
17	Loss of Effector Function of Human Cytolytic T Lymphocytes Is Accompanied by Major Alterations in N- and O-Glycosylation. Journal of Biological Chemistry, 2012, 287, 11240-11251.	3.4	38
18	Dendritic Cells Loaded With mRNA Encoding Full-length Tumor Antigens Prime CD4+ and CD8+ T Cells in Melanoma Patients. Molecular Therapy, 2012, 20, 1063-1074.	8.2	85

#	Article	IF	CITATIONS
19	Inefficient exogenous loading of a tapasinâ€dependent peptide onto <scp>HLA</scp> â€ <scp>B</scp> *44:02 can be improved by acid treatment or fixation of target cells. European Journal of Immunology, 2012, 42, 1417-1428.	2.9	7
20	Immune Suppression in Tumors as a Surmountable Obstacle to Clinical Efficacy of Cancer Vaccines. Cancers, 2011, 3, 2904-2954.	3.7	12
21	Interleukins 1α and 1β secreted by some melanoma cell lines strongly reduce expression of MITFâ€M and melanocyte differentiation antigens. International Journal of Cancer, 2010, 127, 1625-1636.	5.1	53
22	A Galectin-3 Ligand Corrects the Impaired Function of Human CD4 and CD8 Tumor-Infiltrating Lymphocytes and Favors Tumor Rejection in Mice. Cancer Research, 2010, 70, 7476-7488.	0.9	149
23	Single-Step Antigen Loading and Activation of Dendritic Cells by mRNA Electroporation for the Purpose of Therapeutic Vaccination in Melanoma Patients. Clinical Cancer Research, 2009, 15, 3366-3375.	7.0	149
24	The CD4+ T-Cell Response of Melanoma Patients to a MAGE-A3 Peptide Vaccine Involves Potential Regulatory T Cells. Cancer Research, 2009, 69, 4335-4345.	0.9	85
25	Comparison of stable human Treg and Th clones by transcriptional profiling. European Journal of Immunology, 2009, 39, 869-882.	2.9	63
26	Restoring the Association of the T Cell Receptor with CD8 Reverses Anergy in Human Tumor-Infiltrating Lymphocytes. Immunity, 2008, 28, 414-424.	14.3	177
27	Vaccination of a Melanoma Patient with Mature Dendritic Cells Pulsed with MAGE-3 Peptides Triggers the Activity of Nonvaccine Anti-Tumor Cells. Journal of Immunology, 2008, 180, 3585-3593.	0.8	86
28	Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite <i>Theileria parva</i> . Infection and Immunity, 2008, 76, 685-694.	2.2	72
29	Tumor-Reactive CD4+ T Cell Responses to the Melanoma-Associated Chondroitin Sulphate Proteoglycan in Melanoma Patients and Healthy Individuals in the Absence of Autoimmunity. Journal of Immunology, 2007, 178, 7703-7709.	0.8	16
30	Selective identification of HLA-DP4 binding T cell epitopes encoded by the MAGE-A gene family. Cancer Immunology, Immunotherapy, 2007, 56, 807-818.	4.2	19
31	Theileria parva candidate vaccine antigens recognized by immune bovine cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3286-3291.	7.1	129
32	Processing and presentation of tumor antigens and vaccination strategies. Current Opinion in Immunology, 2006, 18, 98-104.	5.5	76
33	A new MAGE-4 antigenic peptide recognized by cytolytic T lymphocytes on HLA–A24 carcinoma cells. Cancer Immunology, Immunotherapy, 2006, 55, 867-872.	4.2	13
34	A new LAGE-1 peptide recognized by cytolytic T lymphocytes on HLA-A68 tumors. Cancer Immunology, Immunotherapy, 2006, 55, 644-652.	4.2	10
35	Frequent DNA hypomethylation of human juxtacentromericBAGE loci in cancer. Genes Chromosomes and Cancer, 2005, 43, 11-24.	2.8	44
36	A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. European Journal of Immunology, 2005, 35, 1066-1075.	2.9	37

#	Article	IF	CITATIONS
37	Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. International Journal of Cancer, 2005, 117, 596-604.	5.1	152
38	A MAGE-1 antigenic peptide recognized by human cytolytic T lymphocytes on HLA-A2 tumor cells. Cancer Immunology, Immunotherapy, 2005, 54, 1214-1220.	4.2	24
39	Monitoring of Anti-Vaccine CD4 T Cell Frequencies in Melanoma Patients Vaccinated with a MAGE-3 Protein. Journal of Immunology, 2005, 174, 2404-2411.	0.8	37
40	Identification of New Antigenic Peptide Presented by HLA-Cw7 and Encoded by Several MAGE Genes Using Dendritic Cells Transduced with Lentiviruses. Journal of Immunology, 2004, 172, 2232-2237.	0.8	44
41	Functional Analysis of Tumor-Specific Th Cell Responses Detected in Melanoma Patients after Dendritic Cell-Based Immunotherapy. Journal of Immunology, 2004, 172, 1304-1310.	0.8	70
42	Messenger RNA-Electroporated Dendritic Cells Presenting MAGE-A3 Simultaneously in HLA Class I and Class II Molecules. Journal of Immunology, 2004, 172, 6649-6657.	0.8	182
43	An Antigenic Peptide Produced by Peptide Splicing in the Proteasome. Science, 2004, 304, 587-590.	12.6	297
44	Side-by-Side Comparison of Lentivirally Transduced and mRNA-Electroporated Dendritic Cells: Implications for Cancer Immunotherapy Protocols. Molecular Therapy, 2004, 10, 768-779.	8.2	78
45	T-cell responses of vaccinated cancer patients. Current Opinion in Immunology, 2003, 15, 131-137.	5.5	80
46	A MAGE-3 Peptide Presented by HLA-DR1 to CD4+T Cells That Were Isolated from a Melanoma Patient Vaccinated with a MAGE-3 Protein. Journal of Immunology, 2003, 171, 219-225.	0.8	43
47	CD4+ T-cell clones specific for wild-type factor VIII: a molecular mechanism responsible for a higher incidence of inhibitor formation in mild/moderate hemophilia A. Blood, 2003, 101, 1351-1358.	1.4	114
48	Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Research, 2003, 63, 5587-94.	0.9	45
49	The Production of a New MAGE-3 Peptide Presented to Cytolytic T Lymphocytes by HLA-B40 Requires the Immunoproteasome. Journal of Experimental Medicine, 2002, 195, 391-399.	8.5	107
50	A reversible functional defect of CD8+ T lymphocytes involving loss of tetramer labeling. European Journal of Immunology, 2002, 32, 1688.	2.9	24
51	Tumorâ€specific shared antigenic peptides recognized by human T cells. Immunological Reviews, 2002, 188, 51-64.	6.0	356
52	New BAGE (B melanoma antigen) genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. European Journal of Human Genetics, 2002, 10, 833-840.	2.8	39
53	A MAGE-1 peptide recognized on HLA-DR15 by CD4+ T cells. European Journal of Immunology, 2001, 31, 1910-1916.	2.9	24
54	A Human CTL Recognizes a Caspase-8-Derived Peptide on Autologous HLA-B*3503 Molecules and Two Unrelated Peptides on Allogeneic HLA-B*3501 Molecules. Journal of Immunology, 2000, 164, 4130-4134.	0.8	16

#	Article	IF	CITATIONS
55	Identification of MAGE-3 Epitopes Presented by HLA-DR Molecules to CD4+ T Lymphocytes. Journal of Experimental Medicine, 1999, 189, 767-778.	8.5	210
56	Effect of epitope flanking residues on the presentation of N-terminal cytotoxic T lymphocyte epitopes. European Journal of Immunology, 1999, 29, 2213-2222.	2.9	27
57	A MAGE-A4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes. European Journal of Immunology, 1999, 29, 3329-3337.	2.9	77
58	Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by geneMAGE-3 and presented by HLA-A1. International Journal of Cancer, 1999, 80, 219-230.	5.1	667
59	A tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes. , 1999, 83, 755-759.		24
60	Estimation of the frequencies of anti-MAGE-3 cytolytic T-lymphocyte precursors in blood from individuals without cancer. , 1998, 77, 538-542.		69
61	Major histocompatibility complex class I presentation of exogenous soluble tumor antigen fused to the B-fragment of Shiga toxin. European Journal of Immunology, 1998, 28, 2726-2737.	2.9	86
62	Molecular cloning and identification of murine caspase-8. Journal of Molecular Biology, 1998, 284, 1017-1026.	4.2	33
63	A CASP-8 Mutation Recognized by Cytolytic T Lymphocytes on a Human Head and Neck Carcinoma. Journal of Experimental Medicine, 1997, 186, 785-793.	8.5	308
64	Mitochondrial DNA polymerases from yeast to man: a new family of polymerases. Gene, 1997, 185, 147-152.	2.2	93
65	T cell defined tumor antigens. Current Opinion in Immunology, 1997, 9, 684-693.	5.5	554
66	Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role for human Vγ9/VÎ′2 T cells in tumor immunity. European Journal of Immunology, 1997, 27, 3368-3379.	2.9	115
67	Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specificMAGE-2 gene product. , 1997, 73, 125-130.		49
68	A peptide encoded by the human MAGE3 gene and presented by HLA-1344 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics, 1996, 43, 377-383.	2.4	98
69	Conserved TCR usage by HLA-Cw*1601-restricted T cell clones recognizing melanoma antigens. International Immunology, 1996, 8, 1463-1466.	4.0	20
70	Genes Coding for Tumor Antigens Recognized by Cytolytic T Lymphocytes. Immunological Reviews, 1995, 145, 229-250.	6.0	215
71	BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity, 1995, 2, 167-175.	14.3	532
72	Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics, 1994, 40, 360-369.	2.4	554

#	Article	IF	CITATIONS
73	Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw* 1601. European Journal of Immunology, 1994, 24, 2134-2140.	2.9	221
74	A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. European Journal of Immunology, 1994, 24, 3038-3043.	2.9	339
75	The Long-Standing Quest for Tumor Rejection Antigens. Clinical Immunology and Immunopathology, 1994, 71, 248-252.	2.0	2
76	Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics, 1992, 35, 145-152.	2.4	178
77	Molecular definition of tumor antigens recognized by T lymphocytes. Current Opinion in Immunology, 1992, 4, 608-612.	5.5	36