
## **Aaron M Streets**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4267658/publications.pdf Version: 2024-02-01



AADON M STREETS

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages. Genome Research, 2022, 32, 242-257.  | 5.5  | 39        |
| 2  | CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Reports, 2022, 38, 110266. | 6.4  | 14        |
| 3  | A Python library for probabilistic analysis of single-cell omics data. Nature Biotechnology, 2022, 40,<br>163-166.                                                            | 17.5 | 216       |
| 4  | Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.                                                                                      | 12.6 | 204       |
| 5  | DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide.<br>Nature Methods, 2022, 19, 711-723.                                       | 19.0 | 45        |
| 6  | The complete sequence of a human genome. Science, 2022, 376, 44-53.                                                                                                           | 12.6 | 1,222     |
| 7  | Histologically resolved multiomics enables precise molecular profiling of human intratumor<br>heterogeneity. PLoS Biology, 2022, 20, e3001699.                                | 5.6  | 6         |
| 8  | Paper-thin multilayer microfluidic devices with integrated valves. Lab on A Chip, 2021, 21, 1287-1298.                                                                        | 6.0  | 5         |
| 9  | Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nature Methods, 2021, 18, 272-282.                                                                  | 19.0 | 246       |
| 10 | Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes. Nature Metabolism, 2021, 3, 485-495.                                   | 11.9 | 64        |
| 11 | T cell self-reactivity during thymic development dictates the timing of positive selection. ELife, 2021, 10, .                                                                | 6.0  | 17        |
| 12 | Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021,<br>1506, 74-97.                                                             | 3.8  | 3         |
| 13 | μDamID: A Microfluidic Approach for Joint Imaging and Sequencing of Protein-DNA Interactions in<br>Single Cells. Cell Systems, 2020, 11, 354-366.e9.                          | 6.2  | 15        |
| 14 | μCB-seq: microfluidic cell barcoding and sequencing for high-resolution imaging and sequencing of single cells. Lab on A Chip, 2020, 20, 3899-3913.                           | 6.0  | 16        |
| 15 | On-ratio PDMS bonding for multilayer microfluidic device fabrication. Journal of Micromechanics and Microengineering, 2019, 29, 107001.                                       | 2.6  | 21        |
| 16 | Radial variation in biochemical composition of the bovine caudal intervertebral disc. JOR Spine, 2019, 2, e1065.                                                              | 3.2  | 22        |
| 17 | Quantitative imaging of lipid droplets in single cells. Analyst, The, 2019, 144, 753-765.                                                                                     | 3.5  | 24        |
| 18 | Controller for microfluidic large-scale integration. HardwareX, 2018, 3, 135-145.                                                                                             | 2.2  | 29        |

AARON M STREETS

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultralarge Modulation of Fluorescence by Neuromodulators in Carbon Nanotubes Functionalized with Self-Assembled Oligonucleotide Rings. Nano Letters, 2018, 18, 6995-7003.    | 9.1  | 70        |
| 20 | Single-Cell Transcriptional Analysis. Annual Review of Analytical Chemistry, 2017, 10, 439-462.                                                                              | 5.4  | 93        |
| 21 | Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on<br>a Microfluidic Platform. Analytical Chemistry, 2016, 88, 4931-4939. | 6.5  | 47        |
| 22 | H3K4me3 epigenomic landscape derived from ChIP-Seq of 1 000 mouse early embryonic cells. Cell<br>Research, 2015, 25, 143-147.                                                | 12.0 | 19        |
| 23 | Microfluidics for biological measurements with single-molecule resolution. Current Opinion in Biotechnology, 2014, 25, 69-77.                                                | 6.6  | 83        |
| 24 | Imaging without Fluorescence: Nonlinear Optical Microscopy for Quantitative Cellular Imaging.<br>Analytical Chemistry, 2014, 86, 8506-8513.                                  | 6.5  | 56        |
| 25 | How deep is enough in single-cell RNA-seq?. Nature Biotechnology, 2014, 32, 1005-1006.                                                                                       | 17.5 | 29        |
| 26 | Microfluidic single-cell whole-transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7048-7053.              | 7.1  | 259       |
| 27 | Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. Nanoscale, 2013, 5, 4701.                                               | 5.6  | 26        |
| 28 | Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics, 2013, 7, 11302.                                                                    | 2.4  | 142       |
| 29 | Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence<br>Reveals Complex Aggregation Kinetics. PLoS ONE, 2013, 8, e54541.        | 2.5  | 69        |
| 30 | High-throughput single-molecule optofluidic analysis. Nature Methods, 2011, 8, 242-245.                                                                                      | 19.0 | 95        |
| 31 | Ostwald Ripening of Clusters during Protein Crystallization. Physical Review Letters, 2010, 104, 178102.                                                                     | 7.8  | 59        |