Shuji Ogino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4267380/publications.pdf

Version: 2024-02-01

369	35,991	92	175
papers	citations	h-index	g-index
375	375	375	39067 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Physical activity and the risk of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related mortality in South Korea: a nationwide cohort study. British Journal of Sports Medicine, 2022, 56, 901-912.	3.1	120
2	Changes in Lifestyle Factors After Endoscopic Screening: AÂProspective Study in the United States. Clinical Gastroenterology and Hepatology, 2022, 20, e1240-e1249.	2.4	8
3	Smoking and Incidence of Colorectal Cancer Subclassified by Tumor-Associated Macrophage Infiltrates. Journal of the National Cancer Institute, 2022, 114, 68-77.	3.0	17
4	Immune cell profiles in the tumor microenvironment of early-onset, intermediate-onset, and later-onset colorectal cancer. Cancer Immunology, Immunotherapy, 2022, 71, 933-942.	2.0	18
5	Electronic Health Records and Genomics. Journal of Molecular Diagnostics, 2022, 24, 1-17.	1.2	8
6	Comparative safety of mRNA COVIDâ€19 vaccines to influenza vaccines: A pharmacovigilance analysis using WHO international database. Journal of Medical Virology, 2022, 94, 1085-1095.	2.5	34
7	Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with <i>Fusobacterium nucleatum</i> and Its Subspecies <i>animalis</i> cancer Epidemiology Biomarkers and Prevention, 2022, 31, 210-220.	1.1	19
8	Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival. Scientific Reports, 2022, 12, 127.	1.6	6
9	Coffee Intake of Colorectal Cancer Patients and Prognosis According to Histopathologic Lymphocytic Reaction and T-Cell Infiltrates. Mayo Clinic Proceedings, 2022, 97, 124-133.	1.4	3
10	Sugar-sweetened beverage and sugar consumption and colorectal cancer incidence and mortality according to anatomic subsite. American Journal of Clinical Nutrition, 2022, 115, 1481-1489.	2.2	16
11	Comparative effectiveness of N95, surgical or medical, and nonâ€medical facemasks in protection against respiratory virus infection: A systematic review and network metaâ€analysis. Reviews in Medical Virology, 2022, 32, e2336.	3.9	22
12	Plasma Metabolite Profiles of Red Meat, Poultry, and Fish Consumption, and Their Associations with Colorectal Cancer Risk. Nutrients, 2022, 14, 978.	1.7	8
13	Tumorâ€associated macrophages and risk of recurrence in stage <scp>III</scp> colorectal cancer. Journal of Pathology: Clinical Research, 2022, 8, 307-312.	1.3	5
14	Desmoplastic Reaction, Immune Cell Response, and Prognosis in Colorectal Cancer. Frontiers in Immunology, 2022, 13, 840198.	2.2	9
15	Utility of Continuous Disease Subtyping Systems for Improved Evaluation of Etiologic Heterogeneity. Cancers, 2022, 14, 1811.	1.7	O
16	Spatial Organization and Prognostic Significance of NK and NKT-like Cells via Multimarker Analysis of the Colorectal Cancer Microenvironment. Cancer Immunology Research, 2022, 10, 215-227.	1.6	23
17	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	1.1	6
18	Prognostic significance of spatial and density analysis of T lymphocytes in colorectal cancer. British Journal of Cancer, 2022, 127, 514-523.	2.9	14

#	Article	IF	CITATIONS
19	OUP accepted manuscript. Journal of the National Cancer Institute, 2022, , .	3.0	0
20	Mortality factors in pancreatic surgery: A systematic review. How important is the hospital volume?. International Journal of Surgery, 2022, 101, 106640.	1.1	2
21	Age at Initiation of Lower Gastrointestinal Endoscopy and Colorectal Cancer Risk Among US Women. JAMA Oncology, 2022, 8, 986.	3.4	11
22	Adherence to a healthy lifestyle in relation to colorectal cancer incidence and all ause mortality after endoscopic polypectomy: A prospective study in three U.S. cohorts. International Journal of Cancer, 2022, 151, 1523-1534.	2.3	3
23	Smoking and colorectal cancer survival in relation to tumor LINE-1 methylation levels: a prospective cohort study. , 2022, 2, .		0
24	Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures. Nature Communications, 2022, 13 , .	5.8	15
25	Western-Style Diet, pks Island-Carrying Escherichia coli, and Colorectal Cancer: Analyses From Two Large Prospective Cohort Studies. Gastroenterology, 2022, 163, 862-874.	0.6	40
26	Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut, 2022, 71, 2107-2122.	6.1	28
27	Association of Body Mass Index With Colorectal Cancer Risk by Genome-Wide Variants. Journal of the National Cancer Institute, 2021, 113, 38-47.	3.0	14
28	A prospective study of erythrocyte polyunsaturated fatty acids and risk of colorectal serrated polyps and conventional adenomas. International Journal of Cancer, 2021, 148, 57-66.	2.3	4
29	No Association Between Vitamin D Supplementation and Risk of Colorectal Adenomas or Serrated Polyps in a Randomized Trial. Clinical Gastroenterology and Hepatology, 2021, 19, 128-135.e6.	2.4	28
30	Comprehensive Assessment of Diet Quality and Risk of Precursors ofÂEarly-Onset Colorectal Cancer. Journal of the National Cancer Institute, 2021, 113, 543-552.	3.0	65
31	Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. Gut, 2021, 70, 620-621.	6.1	27
32	The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunology Research, 2021, 9, 8-19.	1.6	95
33	Risk Factors and Incidence of Colorectal Cancer According to Major Molecular Subtypes. JNCI Cancer Spectrum, 2021, 5, pkaa089.	1.4	11
34	Composition, Spatial Characteristics, and Prognostic Significance of Myeloid Cell Infiltration in Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 1069-1081.	3.2	75
35	The microbiome, genetics, and gastrointestinal neoplasms: the evolving field of molecular pathological epidemiology to analyze the tumor–immune–microbiome interaction. Human Genetics, 2021, 140, 725-746.	1.8	32
36	Rising incidence of early-onset colorectal cancer â€" a call to action. Nature Reviews Clinical Oncology, 2021, 18, 230-243.	12.5	276

#	Article	IF	CITATIONS
37	Dietary intake of branchedâ€chain amino acids and survival after colorectal cancer diagnosis. International Journal of Cancer, 2021, 148, 2471-2480.	2.3	9
38	A Modified Tumor-Node-Metastasis Classification for Primary Operable Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkaa093.	1.4	8
39	Reflection on modern methods: causal inference considerations for heterogeneous disease etiology. International Journal of Epidemiology, 2021, 50, 1030-1037.	0.9	1
40	Standardizing gene product nomenclatureâ€"a call to action. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
41	Association of <i>PIK3CA</i> mutation and PTEN loss with expression of CD274 (PD-L1) in colorectal carcinoma. Oncolmmunology, 2021, 10, 1956173.	2.1	15
42	Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: A nationwide cohort study. PLoS Medicine, 2021, 18, e1003522.	3.9	18
43	Preexisting Type 2 Diabetes and Survival among Patients with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 757-764.	1.1	6
44	Association of <i>Fusobacterium nucleatum</i> with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. Clinical Cancer Research, 2021, 27, 2816-2826.	3.2	36
45	Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus. Reviews in Medical Virology, 2021, 31, e2234.	3.9	12
46	Long-Term Colorectal Cancer Incidence and Mortality After Colonoscopy Screening According to Individuals' Risk Profiles. Journal of the National Cancer Institute, 2021, 113, 1177-1185.	3.0	20
47	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	2.6	5
48	Prognostic significance of myeloid immune cells and their spatial distribution in the colorectal cancer microenvironment., 2021, 9, e002297.		17
49	Tumor Long Interspersed Nucleotide Element-1 (LINE-1) Hypomethylation in Relation to Age of Colorectal Cancer Diagnosis and Prognosis. Cancers, 2021, 13, 2016.	1.7	21
50	Race, Income, and Survival in Stage III Colon Cancer: CALGB 89803 (Alliance). JNCI Cancer Spectrum, 2021, 5, pkab034.	1.4	4
51	Postdiagnostic dairy products intake and colorectal cancer survival in US males and females. American Journal of Clinical Nutrition, 2021, 113, 1636-1646.	2.2	7
52	Sugar-sweetened beverage intake in adulthood and adolescence and risk of early-onset colorectal cancer among women. Gut, 2021, 70, 2330-2336.	6.1	92
53	Risk prediction models for colorectal cancer: Evaluating the discrimination due to added biomarkers. International Journal of Cancer, 2021, 149, 1021-1030.	2.3	2
54	Association between Smoking and Molecular Subtypes of Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab056.	1.4	8

#	Article	IF	CITATIONS
55	Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discovery, 2021, 11, 2446-2455.	7.7	42
56	Association of Screening Lower Endoscopy With Colorectal Cancer Incidence and Mortality in Adults Older Than 75 Years. JAMA Oncology, 2021, 7, 985.	3.4	24
57	Simple Sugar and Sugar-Sweetened Beverage Intake During Adolescence and Risk of Colorectal Cancer Precursors. Gastroenterology, 2021, 161, 128-142.e20.	0.6	58
58	Revisiting social MPE: an integration of molecular pathological epidemiology and social science in the new era of precision medicine. Expert Review of Molecular Diagnostics, 2021, 21, 869-886.	1.5	2
59	Sugar-sweetened beverage, artificially sweetened beverage and sugar intake and colorectal cancer survival. British Journal of Cancer, 2021, 125, 1016-1024.	2.9	9
60	Abstract LB090: Associations of somatically mutated genes and pathways with colorectal cancer specific survival in 4,500 colorectal cancer patients. , 2021 , , .		0
61	Relationship between <i>Fusobacterium nucleatum</i> and antitumor immunity in colorectal cancer liver metastasis. Cancer Science, 2021, 112, 4470-4477.	1.7	25
62	Spatially organized multicellular immune hubs in human colorectal cancer. Cell, 2021, 184, 4734-4752.e20.	13.5	256
63	Tumor-Associated Microbiota in Proximal and Distal Colorectal Cancer and Their Relationships With Clinical Outcomes. Frontiers in Microbiology, 2021, 12, 727937.	1.5	18
64	Total Vitamin D Intake and Risks of Early-Onset Colorectal Cancer and Precursors. Gastroenterology, 2021, 161, 1208-1217.e9.	0.6	40
65	Dairy intake during adolescence and risk of colorectal adenoma later in life. British Journal of Cancer, 2021, 124, 1160-1168.	2.9	11
66	Gallstone Disease and Risk of Conventional Adenomas and Serrated Polyps: A Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2346-2349.	1.1	3
67	DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. International Journal of Cancer, 2020, 146, 363-372.	2.3	40
68	Yogurt consumption and risk of conventional and serrated precursors of colorectal cancer. Gut, 2020, 69, 970.1-972.	6.1	22
69	Metaâ€analysis of 16 studies of the association of alcohol with colorectal cancer. International Journal of Cancer, 2020, 146, 861-873.	2.3	89
70	Colorectal cancer susceptibility variants and risk of conventional adenomas and serrated polyps: results from three cohort studies. International Journal of Epidemiology, 2020, 49, 259-269.	0.9	13
71	Long-term Risk of Colorectal Cancer After Removal of Conventional Adenomas and Serrated Polyps. Gastroenterology, 2020, 158, 852-861.e4.	0.6	153
72	Longâ€term status of predicted body fat percentage, body mass index and other anthropometric factors with risk of colorectal carcinoma: Two large prospective cohort studies in the US. International Journal of Cancer, 2020, 146, 2383-2393.	2.3	16

#	Article	IF	CITATIONS
73	Association of autophagy status with amount of <i>Fusobacterium nucleatum</i> in colorectal cancer. Journal of Pathology, 2020, 250, 397-408.	2.1	27
74	Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology, 2020, 158, 1300-1312.e20.	0.6	90
75	Effect of Supplementation With Marine ï‰-3 Fatty Acid on Risk of Colorectal Adenomas and Serrated Polyps in the US General Population. JAMA Oncology, 2020, 6, 108.	3.4	19
76	Mucosal cancer-associated microbes and anastomotic leakage after resection of colorectal carcinoma. Surgical Oncology, 2020, 32, 63-68.	0.8	14
77	Postmenopausal Hormone Therapy and Colorectal Cancer Risk by Molecularly Defined Subtypes and Tumor Location. JNCI Cancer Spectrum, 2020, 4, pkaa042.	1.4	8
78	Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nature Communications, 2020, 11 , 3644 .	5 . 8	55
79	Tumour budding, poorly differentiated clusters, and T-cell response in colorectal cancer. EBioMedicine, 2020, 57, 102860.	2.7	31
80	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	2.6	124
81	Periodontal Disease, Tooth Loss, and Risk of Serrated Polyps and Conventional Adenomas. Cancer Prevention Research, 2020, 13, 699-706.	0.7	13
82	Influence of KRAS mutations, persistent organic pollutants, and trace elements on survival from pancreatic ductal adenocarcinoma. Environmental Research, 2020, 190, 109781.	3.7	6
83	Coffee Intake and Colorectal Cancer Incidence According to T-Cell Response. JNCI Cancer Spectrum, 2020, 4, pkaa068.	1.4	3
84	Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectrum, 2020, 4, pkaa040.	1.4	8
85	Prediagnostic Circulating Concentrations of Vitamin D Binding Protein and Survival among Patients with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2323-2331.	1.1	9
86	Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Research, 2020, 80, 4578-4590.	0.4	26
87	Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Medicine, 2020, 18, 396.	2.3	76
88	The urgent need for integrated science to fight COVID-19 pandemic and beyond. Journal of Translational Medicine, 2020, 18, 205.	1.8	128
89	Consumption of Fish and I‰-3 Fatty Acids and Cancer Risk: An Umbrella Review of Meta-Analyses of Observational Studies. Advances in Nutrition, 2020, 11, 1134-1149.	2.9	44
90	Insulin-Like Growth Factor-1 Receptor Expression and Disease Recurrence and Survival in Patients with Resected Pancreatic Ductal Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1586-1595.	1.1	8

#	Article	IF	Citations
91	Body fatness over the life course and risk of serrated polyps and conventional adenomas. International Journal of Cancer, 2020, 147, 1831-1844.	2.3	5
92	An integrated analysis of lymphocytic reaction, tumour molecular characteristics and patient survival in colorectal cancer. British Journal of Cancer, 2020, 122, 1367-1377.	2.9	21
93	Functional informed genomeâ€wide interaction analysis of body mass index, diabetes and colorectal cancer risk. Cancer Medicine, 2020, 9, 3563-3573.	1.3	7
94	Response to the letter by Lai et al. regarding our manuscript "Statin use and pancreatic cancer risk in two prospective cohort studiesâ€. Journal of Gastroenterology, 2020, 55, 473-474.	2.3	0
95	Association Between Molecular Subtypes of Colorectal Tumors and Patient Survival, Based on Pooled Analysis of 7 International Studies. Gastroenterology, 2020, 158, 2158-2168.e4.	0.6	34
96	Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. Gastroenterology, 2020, 158, 1313-1325.	0.6	88
97	Risk Factor Profiles Differ for Cancers of Different Regions of the Colorectum. Gastroenterology, 2020, 159, 241-256.e13.	0.6	64
98	Genetic Predictors of Circulating 25-Hydroxyvitamin D and Prognosis after Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1128-1134.	1.1	1
99	Dietary Intake of Branched-Chain Amino Acids and Risk of Colorectal Cancer. Cancer Prevention Research, 2020, 13, 65-72.	0.7	12
100	Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin–Stained Sections. Clinical Cancer Research, 2020, 26, 4326-4338.	3.2	35
101	Depressed Colorectal Cancer: A New Paradigm in Early Colorectal Cancer. Clinical and Translational Gastroenterology, 2020, 11, e00269.	1.3	7
102	Genetic Variants in the Regulatory T cell–Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2719-2728.	1.1	1
103	Dietary Insulin Load and Cancer Recurrence and Survival in Patients With Stage III Colon Cancer: Findings From CALGB 89803 (Alliance). Journal of the National Cancer Institute, 2019, 111, 170-179.	3.0	19
104	Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genetics in Medicine, 2019, 21, 213-223.	1.1	151
105	Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 83-103.	9.6	169
106	Plasma Biomarkers of Insulin and the Insulin-like Growth Factor Axis, and Risk of Colorectal Adenoma and Serrated Polyp. JNCI Cancer Spectrum, 2019, 3, pkz056.	1.4	9
107	Pre-diagnostic leukocyte mitochondrial DNA copy number and colorectal cancer risk. Carcinogenesis, 2019, 40, 1462-1468.	1.3	17
108	Intrinsic Resistance to Immune Checkpoint Blockade in a Mismatch Repair–Deficient Colorectal Cancer. Cancer Immunology Research, 2019, 7, 1230-1236.	1.6	59

#	Article	IF	Citations
109	Physical activity during adolescence and risk of colorectal adenoma later in life: results from the Nurses' Health Study II. British Journal of Cancer, 2019, 121, 86-94.	2.9	19
110	Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 269-290.	2.3	42
111	Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts. International Journal of Cancer, 2019, 145, 3040-3051.	2.3	41
112	Prognostic association of PTGS2 (COX-2) over-expression according to BRAF mutation status in colorectal cancer: Results from two prospective cohorts and CALGB 89803 (Alliance) trial. European Journal of Cancer, 2019, 111, 82-93.	1.3	17
113	Calcium intake and colon cancer risk subtypes by tumor molecular characteristics. Cancer Causes and Control, 2019, 30, 637-649.	0.8	6
114	Association Between Intake of Red and Processed MeatÂandÂSurvival in Patients With Colorectal Cancer inÂaÂPooled Analysis. Clinical Gastroenterology and Hepatology, 2019, 17, 1561-1570.e3.	2.4	7
115	Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiomeâ€driven neoplasms. Journal of Pathology, 2019, 247, 615-628.	2.1	70
116	Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. Journal of the National Cancer Institute, 2019, 111, 42-51.	3.0	30
117	Calcium Intake and Survival after Colorectal Cancer Diagnosis. Clinical Cancer Research, 2019, 25, 1980-1988.	3.2	20
118	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	9.4	377
119	Association of Obesity With Risk of Early-Onset Colorectal Cancer Among Women. JAMA Oncology, 2019, 5, 37.	3.4	305
120	Long-term use of antibiotics and risk of colorectal adenoma. Gut, 2018, 67, gutjnl-2016-313413.	6.1	125
121	Inherited DNA-Repair Defects in Colorectal Cancer. American Journal of Human Genetics, 2018, 102, 401-414.	2.6	89
122	Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discovery, 2018, 8, 730-749.	7.7	367
123	TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor <i>CD274</i> (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncolmmunology, 2018, 7, e1442999.	2.1	53
124	Association of Survival With Adherence to the American Cancer Society Nutrition and Physical Activity Guidelines for Cancer Survivors After Colon Cancer Diagnosis. JAMA Oncology, 2018, 4, 783.	3.4	147
125	Association of Dietary Inflammatory Potential With Colorectal Cancer Risk in Men and Women. JAMA Oncology, 2018, 4, 366.	3.4	136
126	Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut, 2018, 67, 1168-1180.	6.1	139

#	Article	IF	Citations
127	Utility of inverse probability weighting in molecular pathological epidemiology. European Journal of Epidemiology, 2018, 33, 381-392.	2.5	54
128	Association Between Coffee Intake After Diagnosis of Colorectal Cancer and Reduced Mortality. Gastroenterology, 2018, 154, 916-926.e9.	0.6	52
129	Regular Use of Aspirin or Non-Aspirin Nonsteroidal Anti-Inflammatory Drugs Is Not Associated With Risk of Incident Pancreatic Cancer in Two Large Cohort Studies. Gastroenterology, 2018, 154, 1380-1390.e5.	0.6	38
130	Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clinical Gastroenterology and Hepatology, 2018, 16, 1622-1631.e3.	2.4	103
131	Association Between Risk Factors for Colorectal Cancer and Risk of Serrated Polyps and Conventional Adenomas. Gastroenterology, 2018, 155, 355-373.e18.	0.6	138
132	Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncology, 2018, 4, e173420.	3.4	155
133	Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncology, 2018, 4, 71.	3.4	127
134	The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure. Lifetime Data Analysis, 2018, 24, 425-442.	0.4	13
135	Physical Activity and Colorectal Cancer Prognosis According to Tumor-Infiltrating T Cells. JNCI Cancer Spectrum, 2018, 2, pky058.	1.4	10
136	Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). Journal of Clinical Oncology, 2018, 36, 1112-1120.	0.8	50
137	Low-Carbohydrate Diet Score and Macronutrient Intake in Relation to Survival After Colorectal Cancer Diagnosis. JNCI Cancer Spectrum, 2018, 2, pky077.	1.4	25
138	Sedentary Behaviors, TV Viewing Time, and Risk of Young-Onset Colorectal Cancer. JNCI Cancer Spectrum, 2018, 2, pky073.	1.4	110
139	Dysbiosis of the gut microbiota and colorectal cancer: the key target of molecular pathological epidemiology. Journal of Laboratory and Precision Medicine, 2018, 3, 76-76.	1.1	30
140	Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts. British Journal of Cancer, 2018, 119, 1436-1442.	2.9	67
141	Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biology, 2018, 19, 142.	3.8	20
142	The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. American Journal of Pathology, 2018, 188, 2839-2852.	1.9	51
143	Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. Cancer Research, 2018, 78, 5538-5547.	0.4	81
144	<i>Fusobacterium nucleatum</i> in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunology Research, 2018, 6, 1327-1336.	1.6	127

#	Article	IF	Citations
145	Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. European Journal of Cancer, 2018, 103, 98-107.	1.3	21
146	Associations of artificially sweetened beverage intake with disease recurrence and mortality in stage III colon cancer: Results from CALGB 89803 (Alliance). PLoS ONE, 2018, 13, e0199244.	1.1	25
147	Immunoscore for (colorectal) cancer precision medicine. Lancet, The, 2018, 391, 2084-2086.	6.3	50
148	Body Mass Index and Other Anthropomorphic Variables in Relation to Risk of Colorectal Carcinoma Subtypes Classified by Tumor Differentiation Status. FASEB Journal, 2018, 32, 677.9.	0.2	0
149	Tumor Nuclear <i>YAP1</i> Expression Status and Molecular Characteristics in relation to Immune Response to Colorectal Carcinoma. FASEB Journal, 2018, 32, 406.5.	0.2	0
150	Multiplexed Immunoâ€Profiling of the Colorectal Carcinoma Microenvironment Using Archival Human Tissue. FASEB Journal, 2018, 32, 818.4.	0.2	0
151	Bifidobacterium Genus in Colorectal Carcinoma Tissue in relation to Tumor Characteristics and Patient Survival. FASEB Journal, 2018, 32, 407.3.	0.2	0
152	Night shift work duration and risk of colorectal cancer according to IRS1 and IRS2 expression Journal of Clinical Oncology, 2018, 36, 3571-3571.	0.8	0
153	Ancient Diet: Gut Microbiota, Immunity, and Health. Yale Journal of Biology and Medicine, 2018, 91, 177-184.	0.2	11
154	Rotating night shift work, sleep, and colorectal adenoma in women. International Journal of Colorectal Disease, 2017, 32, 1013-1018.	1.0	19
155	Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut, 2017, 66, 1463-1473.	6.1	173
156	A Prospective Study of Smoking and Risk of Synchronous Colorectal Cancers. American Journal of Gastroenterology, 2017, 112, 493-501.	0.2	17
157	Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 816-825.	1.1	10
158	Dietary glycemic and insulin scores and colorectal cancer survival by tumor molecular biomarkers. International Journal of Cancer, 2017, 140, 2648-2656.	2.3	17
159	Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes. Gastroenterology, 2017, 152, 1944-1953.e1.	0.6	124
160	Leucocyte telomere length, genetic variants at the <i>TERT </i> gene region and risk of pancreatic cancer. Gut, 2017, 66, 1116-1122.	6.1	39
161	Tumor SQSTM1 (p62) expression and T cells in colorectal cancer. Oncolmmunology, 2017, 6, e1284720.	2.1	18
162	Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer?. Journal of Diabetes and Its Complications, 2017, 31, 1228-1236.	1.2	30

#	Article	IF	CITATIONS
163	<i>PIK3CA</i> Mutations Contribute to Acquired Cetuximab Resistance in Patients with Metastatic Colorectal Cancer. Clinical Cancer Research, 2017, 23, 4602-4616.	3.2	72
164	Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. European Journal of Epidemiology, 2017, 32, 393-407.	2.5	18
165	Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC Bioinformatics, 2017, 18, 304.	1.2	18
166	Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies. European Journal of Epidemiology, 2017, 32, 419-430.	2.5	17
167	A Comprehensive Model of Colorectal Cancer by Risk Factor Status and Subsite Using Data From the Nurses' Health Study. American Journal of Epidemiology, 2017, 185, 224-237.	1.6	39
168	Lymph node metastases in resected pancreatic ductal adenocarcinoma: predictors of disease recurrence and survival. British Journal of Cancer, 2017, 117, 1874-1882.	2.9	73
169	Tumor PDCD1LG2 (PD-L2) Expression and the Lymphocytic Reaction to Colorectal Cancer. Cancer Immunology Research, 2017, 5, 1046-1055.	1.6	42
170	Tumor expression of calcium sensing receptor and colorectal cancer survival: Results from the nurses' health study and health professionals followâ€up study. International Journal of Cancer, 2017, 141, 2471-2479.	2.3	12
171	Association Between Inflammatory Diet Pattern and Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor. Gastroenterology, 2017, 153, 1517-1530.e14.	0.6	62
172	The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surgical Oncology, 2017, 26, 368-376.	0.8	67
173	Tumor-associated macrophages and response to 5-fluorouracil adjuvant therapy in stage III colorectal cancer. Oncolmmunology, 2017, 6, e1342918.	2.1	90
174	Integration of pharmacology, molecular pathology, and population data science to support precision gastrointestinal oncology. Npj Precision Oncology, 2017, 1 , .	2.3	11
175	Analysis of <i>Fusobacterium</i> persistence and antibiotic response in colorectal cancer. Science, 2017, 358, 1443-1448.	6.0	983
176	Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. Journal of Gastroenterology, 2017, 52, 265-275.	2.3	88
177	Detection of Mismatch Repair Deficiency and Microsatellite Instability in Colorectal Adenocarcinoma by Targeted Next-Generation Sequencing. Journal of Molecular Diagnostics, 2017, 19, 84-91.	1.2	126
178	Periodontal disease, tooth loss and colorectal cancer risk: Results from the Nurses' Health Study. International Journal of Cancer, 2017, 140, 646-652.	2.3	94
179	A Study of Thymidylate Synthase Expression as a Biomarker for Resectable Colon Cancer: Alliance (Cancer and Leukemia Group B) 9581 and 89803. Oncologist, 2017, 22, 107-114.	1.9	18
180	Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by <i>Fusobacterium nucleatum</i> in Tumor Tissue. JAMA Oncology, 2017, 3, 921.	3.4	243

#	Article	IF	Citations
181	Aspirin exerts high anti-cancer activity in <i>PIK3CA</i> -mutant colon cancer cells. Oncotarget, 2017, 8, 87379-87389.	0.8	23
182	Cigarette Smoking and Pancreatic Cancer Survival. Journal of Clinical Oncology, 2017, 35, 1822-1828.	0.8	78
183	Aspirin Use and Colorectal Cancer Survival According to Tumor CD274 (Programmed Cell Death 1) Tj ETQq1 1 0.	.784314 r 0.8	gBT/Overlo
184	Post-colonoscopy colorectal cancer: the key role of molecular pathological epidemiology. Translational Gastroenterology and Hepatology, 2017, 2, 9-9.	1.5	5
185	Abstract IA28: Molecular pathological epidemiology of risk factors and CRC microbial and immune characteristics. Cancer Research, 2017, 77, IA28-IA28.	0.4	2
186	American Cancer Society (ACS) Nutrition and Physical Activity Guidelines after colon cancer diagnosis and disease-free (DFS), recurrence-free (RFS), and overall survival (OS) in CALGB 89803 (Alliance) Journal of Clinical Oncology, 2017, 35, 10006-10006.	0.8	4
187	Enrichment of germline DNA-repair gene mutations in patients with colorectal cancer Journal of Clinical Oncology, 2017, 35, 1500-1500.	0.8	1
188	Nut consumption and survival in stage III colon cancer patients: Results from CALGB 89803 (Alliance) Journal of Clinical Oncology, 2017, 35, 3517-3517.	0.8	5
189	Long-chain omega-3 fatty acid and fish intake after colon cancer diagnosis and disease-free, recurrence-free, and overall survival in CALGB 89803 (Alliance) Journal of Clinical Oncology, 2017, 35, 585-585.	0.8	7
190	Aspirin in the era of immunotherapy. Oncotarget, 2017, 8, 73370-73371.	0.8	5
191	Clinical actionability of germline testing in patients with limited colorectal polyps Journal of Clinical Oncology, 2017, 35, e13027-e13027.	0.8	0
192	Optical Imaging of Mesenchymal Epithelial Transition Factor (MET) for Enhanced Detection and Characterization of Primary and Metastatic Hepatic Tumors. Theranostics, 2016, 6, 2028-2038.	4.6	15
193	Plasma 25-Hydroxyvitamin D, Vitamin D Binding Protein, and Risk of Colorectal Cancer in the Nurses' Health Study. Cancer Prevention Research, 2016, 9, 664-672.	0.7	38
194	Statistical methods for studying disease subtype heterogeneity. Statistics in Medicine, 2016, 35, 782-800.	0.8	204
195	All Biomedical and Health Science Researchers, Including Laboratory Physicians and Scientists, Need Adequate Education and Training in Study Design and Statistics. Clinical Chemistry, 2016, 62, 1039-1040.	1.5	4
196	Vitamin B2 intake and colorectal cancer risk; results from the Nurses' Health Study and the Health Professionals Followâ€Up Study cohort. International Journal of Cancer, 2016, 139, 996-1008.	2.3	14
197	Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. International Journal of Cancer, 2016, 139, 854-868.	2.3	42
198	Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. British Journal of Nutrition, 2016, 115, 1643-1660.	1.2	116

#	Article	IF	CITATIONS
199	Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncology, 2016, 2, 762.	3.4	261
200	Soluble tumour necrosis factor receptor type II and survival in colorectal cancer. British Journal of Cancer, 2016, 114, 995-1002.	2.9	31
201	Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports, 2016, 15, 857-865.	2.9	671
202	Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation. Cancer Immunology Research, 2016, 4, 520-530.	1.6	79
203	Marine ω-3 Polyunsaturated Fatty Acid Intake and Risk of Colorectal Cancer Characterized by Tumor-Infiltrating T Cells. JAMA Oncology, 2016, 2, 1197.	3.4	68
204	Calcium intake and colorectal cancer risk: Results from the nurses' health study and health professionals followâ€up study. International Journal of Cancer, 2016, 139, 2232-2242.	2.3	54
205	Regular Aspirin Use Associates With Lower Risk of ColorectalÂCancers With Low Numbers of Tumor-Infiltrating Lymphocytes. Gastroenterology, 2016, 151, 879-892.e4.	0.6	62
206	Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clinical and Translational Gastroenterology, 2016, 7, e200.	1.3	225
207	Pancreatic Cancer Risk Associated with Prediagnostic Plasma Levels of Leptin and Leptin Receptor Genetic Polymorphisms. Cancer Research, 2016, 76, 7160-7167.	0.4	46
208	Prediagnostic Plasma 25-Hydroxyvitamin D and Pancreatic Cancer Survival. Journal of Clinical Oncology, 2016, 34, 2899-2905.	0.8	49
209	Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut, 2016, 65, 296-304.	6.1	83
210	Circulating Metabolites and Survival Among Patients With Pancreatic Cancer. Journal of the National Cancer Institute, 2016, 108, djv409.	3.0	31
211	CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk. British Journal of Cancer, 2016, 114, 221-229.	2.9	18
212	Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Review of Molecular Diagnostics, 2016, 16, 11-23.	1.5	86
213	Plasma Inflammatory Markers and Risk of Advanced Colorectal Adenoma in Women. Cancer Prevention Research, 2016, 9, 27-34.	0.7	30
214	Review Article. Epidemiology, 2016, 27, 602-611.	1.2	154
215	MicroRNA <i>MIR21</i> (miR-21) and PTGS2 Expression in Colorectal Cancer and Patient Survival. Clinical Cancer Research, 2016, 22, 3841-3848.	3.2	53
216	Survival Benefit of Exercise Differs by Tumor IRS1 Expression Status in Colorectal Cancer. Annals of Surgical Oncology, 2016, 23, 908-917.	0.7	29

#	Article	IF	CITATIONS
217	Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. American Journal of Clinical Nutrition, 2016, 103, 184-191.	2.2	80
218	Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According to <i>KRAS</i> Mutation Status. Journal of the National Cancer Institute, 2016, 108, djv363.	3.0	37
219	Long-term status and change of body fat distribution, and risk of colorectal cancer: a prospective cohort study. International Journal of Epidemiology, 2016, 45, 871-883.	0.9	52
220	Prognostic Utility of Molecular Factors by Age at Diagnosis of Colorectal Cancer. Clinical Cancer Research, 2016, 22, 1489-1498.	3.2	9
221	<i>Fusobacterium nucleatum</i> in colorectal carcinoma tissue and patient prognosis. Gut, 2016, 65, 1973-1980.	6.1	718
222	MicroRNA <i>MIR21</i> and T Cells in Colorectal Cancer. Cancer Immunology Research, 2016, 4, 33-40.	1.6	29
223	Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer. PLoS Genetics, 2016, 12, e1006296.	1.5	38
224	Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget, 2016, 7, 55098-55109.	0.8	31
225	Novel driver genes and genomic predictors of immune infiltrates in colorectal cancer Journal of Clinical Oncology, 2016, 34, 557-557.	0.8	0
226	Association Between Plasma Levels of Macrophage Inhibitory Cytokine-1 Before Diagnosis of Colorectal Cancer and Mortality. Gastroenterology, 2015, 149, 614-622.	0.6	44
227	<i>Fusobacterium nucleatum</i> i>and T Cells in Colorectal Carcinoma. JAMA Oncology, 2015, 1, 653.	3.4	498
228	Mendelian randomization study of height and risk of colorectal cancer. International Journal of Epidemiology, 2015, 44, 662-672.	0.9	55
229	Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1024-1031.	1.1	67
230	LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes and Development, 2015, 29, 1074-1086.	2.7	92
231	Survival Among Patients With Pancreatic Cancer and Long-Standing or Recent-Onset Diabetes Mellitus. Journal of Clinical Oncology, 2015, 33, 29-35.	0.8	83
232	A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology, 2015, 148, 1330-1339.e14.	0.6	129
233	Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Modern Pathology, 2015, 28, 14-29.	2.9	172
234	Prognostic Significance and Molecular Features of Signet-Ring Cell and Mucinous Components in Colorectal Carcinoma. Annals of Surgical Oncology, 2015, 22, 1226-1235.	0.7	81

#	Article	IF	CITATIONS
235	A Meta-Regression Method for Studying Etiological Heterogeneity Across Disease Subtypes Classified by Multiple Biomarkers. American Journal of Epidemiology, 2015, 182, 263-270.	1.6	35
236	Adulthood Weight Change and Risk of Colorectal Cancer in the Nurses' Health Study and Health Professionals Follow-up Study. Cancer Prevention Research, 2015, 8, 620-627.	0.7	31
237	Early Life Body Fatness and Risk of Colorectal Cancer in U.S. Women and Men—Results from Two Large Cohort Studies. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 690-697.	1.1	74
238	Marine \ddot{l} %-3 Polyunsaturated Fatty Acids and Risk for Colorectal Cancer According to Microsatellite Instability. Journal of the National Cancer Institute, 2015, 107, .	3.0	37
239	Association of Aspirin and NSAID Use With Risk of Colorectal Cancer According to Genetic Variants. JAMA - Journal of the American Medical Association, 2015, 313, 1133.	3.8	171
240	Identification of a common variant with potential pleiotropic effect on risk of inflammatory bowel disease and colorectal cancer. Carcinogenesis, 2015, 36, 999-1007.	1.3	28
241	Prediagnostic Plasma Adiponectin and Survival among Patients with Colorectal Cancer. Cancer Prevention Research, 2015, 8, 1138-1145.	0.7	23
242	TFF2–CXCR4 Axis Is Associated with <i>BRAF</i> V600E Colon Cancer. Cancer Prevention Research, 2015, 8, 614-619.	0.7	9
243	Molecular pathological epidemiology gives clues to paradoxical findings. European Journal of Epidemiology, 2015, 30, 1129-1135.	2.5	34
244	Coffee Intake, Recurrence, and Mortality in Stage III Colon Cancer: Results From CALGB 89803 (Alliance). Journal of Clinical Oncology, 2015, 33, 3598-3607.	0.8	60
245	Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival. American Journal of Clinical Nutrition, 2015, 102, 1134-1141.	2.2	17
246	Lifecourse Epidemiology and Molecular Pathological Epidemiology. American Journal of Preventive Medicine, 2015, 48, 116-119.	1.6	16
247	Aspirin and COX-2 Inhibitor Use in Patients With Stage III Colon Cancer. Journal of the National Cancer Institute, 2015, 107, 345.	3.0	115
248	Comprehensive molecular characterization of colorectal cancer reveals genomic predictors of immune cell infiltrates Journal of Clinical Oncology, 2015, 33, 3505-3505.	0.8	2
249	Processed and Unprocessed Red Meat and Risk of Colorectal Cancer: Analysis by Tumor Location and Modification by Time. PLoS ONE, 2015, 10, e0135959.	1.1	106
250	Prediagnostic plasma adiponectin and survival among patients with colorectal cancer Journal of Clinical Oncology, 2015, 33, 526-526.	0.8	0
251	Sugar-Sweetened Beverage Intake and Cancer Recurrence and Survival in CALGB 89803 (Alliance). PLoS ONE, 2014, 9, e99816.	1.1	65
252	Post Diagnosis Diet Quality and Colorectal Cancer Survival in Women. PLoS ONE, 2014, 9, e115377.	1.1	74

#	Article	IF	Citations
253	Predicted 25(OH)D Score and Colorectal Cancer Risk According to Vitamin D Receptor Expression. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1628-1637.	1.1	23
254	Evaluation of stromal HGF immunoreactivity as a biomarker for melanoma response to RAF inhibitors. Modern Pathology, 2014, 27, 1193-1202.	2.9	18
255	Challenges and Opportunities in International Molecular Cancer Prevention Research: An ASPO Molecular Epidemiology and the Environment and International Cancer Prevention Interest Groups Report. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2613-2617.	1,1	14
256	Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. International Journal of Cancer, 2014, 134, 2458-2467.	2.3	46
257	Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. American Journal of Clinical Nutrition, 2014, 100, 1479-1488.	2.2	27
258	SMO Expression in Colorectal Cancer: Associations with Clinical, Pathological, and Molecular Features. Annals of Surgical Oncology, 2014, 21, 4164-4173.	0.7	24
259	Aspirin and the Risk of Colorectal Cancer in Relation to the Expression of 15-Hydroxyprostaglandin Dehydrogenase (<i>HPGD</i>). Science Translational Medicine, 2014, 6, 233re2.	5.8	91
260	Response. Journal of the National Cancer Institute, 2014, 106, dju181-dju181.	3.0	0
261	Urinary PGE-M Levels Are Associated with Risk of Colorectal Adenomas and Chemopreventive Response to Anti-Inflammatory Drugs. Cancer Prevention Research, 2014, 7, 758-765.	0.7	36
262	Tumor LINE-1 Methylation Level and Microsatellite Instability in Relation to Colorectal Cancer Prognosis. Journal of the National Cancer Institute, 2014, 106, .	3.0	58
263	A Prospective Study of Macrophage Inhibitory Cytokine-1 (MIC-1/GDF15) and Risk of Colorectal Cancer. Journal of the National Cancer Institute, 2014, 106, dju016.	3.0	79
264	RNF43 is frequently mutated in colorectal and endometrial cancers. Nature Genetics, 2014, 46, 1264-1266.	9.4	388
265	Progress and Opportunities in Molecular Pathological Epidemiology of Colorectal Premalignant Lesions. American Journal of Gastroenterology, 2014, 109, 1205-1214.	0.2	55
266	Towards the introduction of the †Immunoscore' in the classification of malignant tumours. Journal of Pathology, 2014, 232, 199-209.	2.1	1,151
267	Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Molecular Cancer, 2014, 13, 135.	7.9	121
268	Reply. Gastroenterology, 2014, 147, 246-247.	0.6	0
269	Aspirin Use and Risk of Colorectal Cancer According to BRAF Mutation Status. JAMA - Journal of the American Medical Association, 2013, 309, 2563.	3.8	146
270	The Merits of Subtyping Obesity. JAMA - Journal of the American Medical Association, 2013, 310, 2147.	3.8	88

#	Article	IF	CITATIONS
271	Aspirin Use, 8q24 Single Nucleotide Polymorphism rs6983267, and Colorectal Cancer According to CTNNB1 Alterations. Journal of the National Cancer Institute, 2013, 105, 1852-1861.	3.0	66
272	Predictive and Prognostic Analysis of PIK3CA Mutation in Stage III Colon Cancer Intergroup Trial. Journal of the National Cancer Institute, 2013, 105, 1789-1798.	3.0	43
273	Long-Term Colorectal-Cancer Incidence and Mortality after Lower Endoscopy. New England Journal of Medicine, 2013, 369, 1095-1105.	13.9	1,232
274	Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Modern Pathology, 2013, 26, 465-484.	2.9	193
275	Phenotypic and tumor molecular characterization of colorectal cancer in relation to a susceptibility SMAD7 variant associated with survival. Carcinogenesis, 2013, 34, 292-298.	1.3	22
276	Prospective Analysis of Body Mass Index, Physical Activity, and Colorectal Cancer Risk Associated with \hat{l}^2 -Catenin (CTNNB1) Status. Cancer Research, 2013, 73, 1600-1610.	0.4	61
277	Prospective Study of Family History and Colorectal Cancer Risk by Tumor LINE-1 Methylation Level. Journal of the National Cancer Institute, 2013, 105, 130-140.	3.0	55
278	A Prospective Study of Duration of Smoking Cessation and Colorectal Cancer Risk by Epigenetics-related Tumor Classification. American Journal of Epidemiology, 2013, 178, 84-100.	1.6	81
279	The Role of Epidemiology in the Era of Molecular Epidemiology and Genomics: Summary of the 2013 AJE-sponsored Society of Epidemiologic Research Symposium. American Journal of Epidemiology, 2013, 178, 1350-1354.	1.6	29
280	Physical Activity, Tumor PTGS2 Expression, and Survival in Patients with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1142-1152.	1.1	34
281	Anatomic subsite of primary colorectal cancer and subsequent risk and distribution of second cancers. Cancer, 2013, 119, 3140-3147.	2.0	53
282	Plasma Adiponectin and Soluble Leptin Receptor and Risk of Colorectal Cancer: A Prospective Study. Cancer Prevention Research, 2013, 6, 875-885.	0.7	64
283	Abstract CN06-01: Molecular pathological epidemiology (MPE): Overview of its paradigm and wide applicability even without tumor tissue. , 2013, , .		3
284	Development of dietary methyl score using plasma homocysteine level in the large two US cohort study. FASEB Journal, 2013, 27, .	0.2	0
285	Ogino et al. Respond to "The 21st Century Epidemiologist". American Journal of Epidemiology, 2012, 176, 672-674.	1.6	9
286	Interdisciplinary Education to Integrate Pathology and Epidemiology: Towards Molecular and Population-Level Health Science. American Journal of Epidemiology, 2012, 176, 659-667.	1.6	64
287	Genomic analysis identifies association of <i>Fusobacterium</i> with colorectal carcinoma. Genome Research, 2012, 22, 292-298.	2.4	1,587
288	Predictive and Prognostic Roles of <i>BRAF</i> Mutation in Stage III Colon Cancer: Results from Intergroup Trial CALGB 89803. Clinical Cancer Research, 2012, 18, 890-900.	3.2	239

#	Article	IF	Citations
289	Commentary: Lifestyle factors and colorectal cancer microsatellite instability-molecular pathological epidemiology science, based on unique tumour principle. International Journal of Epidemiology, 2012, 41, 1072-1074.	0.9	24
290	Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut, 2012, 61, 847-854.	6.1	518
291	Aspirin Use, Tumor <i>PIK3CA</i> Mutation, and Colorectal-Cancer Survival. New England Journal of Medicine, 2012, 367, 1596-1606.	13.9	752
292	Association Between Colorectal Cancer Susceptibility Loci and Survival Time After Diagnosis With Colorectal Cancer. Gastroenterology, 2012, 143, 51-54.e4.	0.6	39
293	Serrated Lesions of the Colorectum: Review and Recommendations From an Expert Panel. American Journal of Gastroenterology, 2012, 107, 1315-1329.	0.2	948
294	How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Review of Molecular Diagnostics, 2012, 12, 621-628.	1.5	143
295	Body Mass Index and Risk of Colorectal Cancer According to Fatty Acid Synthase Expression in the Nurses' Health Study. Journal of the National Cancer Institute, 2012, 104, 415-420.	3.0	54
296	Colorectal cancer: a tale of two sides or a continuum?: Figure 1. Gut, 2012, 61, 794-797.	6.1	224
297	Inflammatory Markers Are Associated With Risk of Colorectal Cancer and Chemopreventive Response to Anti-Inflammatory Drugs. Gastroenterology, 2011, 140, 799-808.e2.	0.6	115
298	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	9.4	270
299	Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut, 2011, 60, 397-411.	6.1	453
300	Cancer immunologyâ€"analysis of host and tumor factors for personalized medicine. Nature Reviews Clinical Oncology, 2011, 8, 711-719.	12.5	251
301	DNA Methylation in the Rectal Mucosa Is Associated with Crypt Proliferation and Fecal Short-Chain Fatty Acids. Digestive Diseases and Sciences, 2011, 56, 387-396.	1.1	23
302	MGMT promoter methylation, loss of expression and prognosis in 855 colorectal cancers. Cancer Causes and Control, 2011, 22, 301-309.	0.8	67
303	Reply to letter entitled †How dense, how intense? Role of tumour†infiltrating lymphocytes across colorectal cancer stages†M. Re: Nosho <i>et al</i> . Tumour†infiltrating T†cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. <i>J Pathol </i> 2010; 222: 350†366. Journal of Pathology. 2011. 225. 629-630.	2.1	0
304	Phosphorylated AKT expression is associated with <i>PIK3CA</i> mutation, low stage, and favorable outcome in 717 colorectal cancers. Cancer, 2011, 117, 1399-1408.	2.0	75
305	Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review. International Journal of Cancer, 2011, 128, $1080-1094$.	2.3	103
306	Association of CTNNB1 (\hat{l}^2 -Catenin) Alterations, Body Mass Index, and Physical Activity With Survival in Patients With Colorectal Cancer. JAMA - Journal of the American Medical Association, 2011, 305, 1685.	3.8	156

#	Article	IF	Citations
307	Statin Use and Colorectal Cancer Risk According to Molecular Subtypes in Two Large Prospective Cohort Studies. Cancer Prevention Research, 2011, 4, 1808-1815.	0.7	53
308	Relationship Between Statin Use and Colon Cancer Recurrence and Survival: Results From CALGB 89803. Journal of the National Cancer Institute, 2011, 103, 1540-1551.	3.0	69
309	TGFBR2 and BAX Mononucleotide Tract Mutations, Microsatellite Instability, and Prognosis in 1072 Colorectal Cancers. PLoS ONE, 2011, 6, e25062.	1.1	42
310	CDK8 expression in 470 colorectal cancers in relation to $\hat{l}^2 \hat{a} \in \epsilon$ atenin activation, other molecular alterations and patient survival. International Journal of Cancer, 2010, 126, 2863-2873.	2.3	88
311	Tumourâ€infiltrating Tâ€eell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. Journal of Pathology, 2010, 222, 350-366.	2.1	424
312	Lifestyle Factors and Microsatellite Instability in Colorectal Cancer: The Evolving Field of Molecular Pathological Epidemiology. Journal of the National Cancer Institute, 2010, 102, 365-367.	3.0	155
313	Cathepsin B Expression and Survival in Colon Cancer: Implications for Molecular Detection of Neoplasia. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2777-2785.	1.1	53
314	Dietary folate, alcohol and B vitamins in relation to LINE-1 hypomethylation in colon cancer. Gut, 2010, 59, 794-799.	6.1	137
315	Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Molecular Cancer, 2010, 9, 125.	7.9	131
316	Precision of Pyrosequencing Assay to Measure LINE-1 Methylation in Colon Cancer, Normal Colonic Mucosa, and Peripheral Blood Cells. Journal of Molecular Diagnostics, 2010, 12, 177-183.	1.2	128
317	Negative Lymph Node Count Is Associated With Survival of Colorectal Cancer Patients, Independent of Tumoral Molecular Alterations and Lymphocytic Reaction. American Journal of Gastroenterology, 2010, 105, 420-433.	0.2	75
318	A Cohort Study of STMN1 Expression in Colorectal Cancer: Body Mass Index and Prognosis. American Journal of Gastroenterology, 2009, 104, 2047-2056.	0.2	49
319	Aspirin Use and Survival After Diagnosis of Colorectal Cancer. JAMA - Journal of the American Medical Association, 2009, 302, 649.	3.8	497
320	A Cohort Study of Cyclin D1 Expression and Prognosis in 602 Colon Cancer Cases. Clinical Cancer Research, 2009, 15, 4431-4438.	3.2	71
321	A Cohort Study of p27 Localization in Colon Cancer, Body Mass Index, and Patient Survival. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1849-1858.	1.1	46
322	<i>PIK3CA</i> Mutation Is Associated With Poor Prognosis Among Patients With Curatively Resected Colon Cancer. Journal of Clinical Oncology, 2009, 27, 1477-1484.	0.8	303
323	Physical Activity and Male Colorectal Cancer Survival. Archives of Internal Medicine, 2009, 169, 2102.	4.3	223
324	Prognostic Significance and Molecular Associations of 18q Loss of Heterozygosity: A Cohort Study of Microsatellite Stable Colorectal Cancers. Journal of Clinical Oncology, 2009, 27, 4591-4598.	0.8	108

#	Article	IF	Citations
325	<i>KRAS</i> Mutation in Stage III Colon Cancer and Clinical Outcome Following Intergroup Trial CALGB 89803. Clinical Cancer Research, 2009, 15, 7322-7329.	3.2	187
326	p21 Expression in Colon Cancer and Modifying Effects of Patient Age and Body Mass Index on Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2513-2521.	1.1	60
327	Lymphocytic Reaction to Colorectal Cancer Is Associated with Longer Survival, Independent of Lymph Node Count, Microsatellite Instability, and CpG Island Methylator Phenotype. Clinical Cancer Research, 2009, 15, 6412-6420.	3.2	350
328	CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut, 2009, 58, 90-96.	6.1	682
329	Colorectal Cancer Expression of Peroxisome Proliferator-Activated Receptor \hat{I}^3 (PPARG, PPARgamma) Is Associated With Good Prognosis. Gastroenterology, 2009, 136, 1242-1250.	0.6	140
330	A Prospective Cohort Study Shows Unique Epigenetic, Genetic, and Prognostic Features of Synchronous Colorectal Cancers. Gastroenterology, 2009, 137, 1609-1620.e3.	0.6	145
331	LINEâ€1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. International Journal of Cancer, 2008, 122, 2767-2773.	2.3	224
332	Cyclooxygenase-2 overexpression is common in serrated and non-serrated colorectal adenoma, but uncommon in hyperplastic polyp and sessile serrated polyp/adenoma. BMC Cancer, 2008, 8, 33.	1.1	28
333	Folate and Vitamin B6 Intake and Risk of Colon Cancer in Relation to p53 Expression. Gastroenterology, 2008, 135, 770-780.	0.6	59
334	PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations. Neoplasia, 2008, 10, 534-541.	2.3	208
335	Molecular Classification and Correlates in Colorectal Cancer. Journal of Molecular Diagnostics, 2008, 10, 13-27.	1.2	381
336	Cohort Study of Fatty Acid Synthase Expression and Patient Survival in Colon Cancer. Journal of Clinical Oncology, 2008, 26, 5713-5720.	0.8	159
337	A Cohort Study of Tumoral LINE-1 Hypomethylation and Prognosis in Colon Cancer. Journal of the National Cancer Institute, 2008, 100, 1734-1738.	3.0	338
338	Cyclooxygenase-2 Expression Is an Independent Predictor of Poor Prognosis in Colon Cancer. Clinical Cancer Research, 2008, 14, 8221-8227.	3.2	179
339	Comprehensive Biostatistical Analysis of CpG Island Methylator Phenotype in Colorectal Cancer Using a Large Population-Based Sample. PLoS ONE, 2008, 3, e3698.	1.1	274
340	Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer. Gut, 2007, 56, 1564-1571.	6.1	96
341	Standard Mutation Nomenclature in Molecular Diagnostics. Journal of Molecular Diagnostics, 2007, 9, 1-6.	1.2	146
342	Cytoplasmic localization of p27 (cyclin-dependent kinase inhibitor 1B/KIP1) in colorectal cancer: inverse correlations with nuclear p27 loss, microsatellite instability, and CpG island methylator phenotype. Human Pathology, 2007, 38, 585-592.	1.1	22

#	Article	IF	CITATIONS
343	TGFBR2 mutation is correlated with CpG island methylator phenotype in microsatellite instability-high colorectal cancer. Human Pathology, 2007, 38, 614-620.	1.1	42
344	Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype. Human Pathology, 2007, 38, 842-849.	1.1	64
345	Aspirin and the Risk of Colorectal Cancer in Relation to the Expression of COX-2. New England Journal of Medicine, 2007, 356, 2131-2142.	13.9	692
346	Evaluation of Markers for CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer by a Large Population-Based Sample. Journal of Molecular Diagnostics, 2007, 9, 305-314.	1.2	296
347	Loss of nuclear p27 (CDKN1B/KIP1) in colorectal cancer is correlated with microsatellite instability and CIMP. Modern Pathology, 2007, 20, 15-22.	2.9	71
348	18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high. BMC Cancer, 2007, 7, 72.	1.1	49
349	MGMT germline polymorphism is associated with somatic MGMT promoter methylation and gene silencing in colorectal cancer. Carcinogenesis, 2007, 28, 1985-1990.	1.3	88
350	Bayesian Risk Assessment in Genetic Testing for Autosomal Dominant Disorders with Age-Dependent Penetrance. Journal of Genetic Counseling, 2007, 16, 29-39.	0.9	5
351	CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 450, 529-537.	1.4	111
352	Precision and Performance Characteristics of Bisulfite Conversion and Real-Time PCR (MethyLight) for Quantitative DNA Methylation Analysis. Journal of Molecular Diagnostics, 2006, 8, 209-217.	1.2	361
353	Combined Analysis of COX-2 and p53 Expressions Reveals Synergistic Inverse Correlations with Microsatellite Instability and CpG Island Methylator Phenotype in Colorectal Cancer. Neoplasia, 2006, 8, 458-464.	2.3	73
354	CpG Island Methylator Phenotype-Low (CIMP-Low) in Colorectal Cancer: Possible Associations with Male Sex and KRAS Mutations. Journal of Molecular Diagnostics, 2006, 8, 582-588.	1.2	261
355	Correlation of Pathologic Features With CpG Island Methylator Phenotype (CIMP) by Quantitative DNA Methylation Analysis in Colorectal Carcinoma. American Journal of Surgical Pathology, 2006, 30, 1175-1183.	2.1	85
356	Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component. Modern Pathology, 2006, 19, 59-68.	2.9	218
357	Epigenetic profiling of synchronous colorectal neoplasias by quantitative DNA methylation analysis. Modern Pathology, 2006, 19, 1083-1090.	2.9	38
358	Risk calculations for cystic fibrosis in neonatal screening by immunoreactive trypsinogen and CFTR mutation tests. Genetics in Medicine, 2005, 7, 317-327.	1.1	9
359	Molecular Alterations in Tumors and Response to Combination Chemotherapy with Gefitinib for Advanced Colorectal Cancer. Clinical Cancer Research, 2005, 11, 6650-6656.	3.2	141
360	Sensitive Sequencing Method for KRAS Mutation Detection by Pyrosequencing. Journal of Molecular Diagnostics, 2005, 7, 413-421.	1,2	448

Shuji Ogino

#	Article	IF	CITATIONS
361	Bayesian analysis for cystic fibrosis risks in prenatal and carrier screening. Genetics in Medicine, 2004, 6, 439-449.	1.1	19
362	Spinal muscular atrophy: molecular genetics and diagnostics. Expert Review of Molecular Diagnostics, 2004, 4, 15-29.	1.5	124
363	New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. European Journal of Human Genetics, 2004, 12, 1015-1023.	1.4	121
364	Bayesian Analysis and Risk Assessment in Genetic Counseling and Testing. Journal of Molecular Diagnostics, 2004, 6, 1-9.	1.2	26
365	Genotype and haplotype distributions of MTHFR 677C>T and 1298A>C single nucleotide polymorphisms: a meta-analysis. Journal of Human Genetics, 2003, 48, 0001-0007.	1.1	118
366	Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1. European Journal of Human Genetics, 2003, 11, 275-277.	1.4	48
367	Quantification of PCR Bias Caused by a Single Nucleotide Polymorphism in SMN Gene Dosage Analysis. Journal of Molecular Diagnostics, 2002, 4, 185-190.	1.2	23
368	Extensive squamous metaplasia with cytologic atypia in diffuse alveolar damage mimicking squamous cell carcinoma: A report of 2 cases. Human Pathology, 2002, 33, 1052-1054.	1.1	18
369	Genetic testing and risk assessment for spinal muscular atrophy (SMA). Human Genetics, 2002, 111, 477-500.	1.8	167