Elizabeth Yuriev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4267288/publications.pdf

Version: 2024-02-01

88	2,943	26 h-index	52
papers	citations		g-index
91	91	91	4178
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Problem solving in chemistry supported by metacognitive scaffolding: teaching associates' perspectives and practices. Chemistry Education Research and Practice, 2022, 23, 436-451.	2.5	6
2	Effect of Changing From Closed-Book to Formulary-Allowed Examinations. American Journal of Pharmaceutical Education, 2021, 85, 7990.	2.1	3
3	Markov State Model Analysis of Haloperidol Binding to the D3 Dopamine Receptor. Journal of Chemical Theory and Computation, 2020, 16, 3879-3888.	5.3	4
4	Antibody Recognition of a Polysaccharide Common to many Microbes and Biofilms. FASEB Journal, 2019, 33, 351.1.	0.5	0
5	Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. Journal of Biological Chemistry, 2018, 293, 5079-5089.	3.4	39
6	The influence and manipulation of acid/base properties in drug discovery. Drug Discovery Today: Technologies, 2018, 27, 41-47.	4.0	6
7	Free Energy Methods in Drug Design: Prospects of "Alchemical Perturbation―in Medicinal Chemistry. Journal of Medicinal Chemistry, 2018, 61, 638-649.	6.4	125
8	Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial <i>Burkholderia ambifaria</i> Lectin. Journal of Chemical Information and Modeling, 2018, 58, 1976-1989.	5.4	9
9	The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells. British Journal of Haematology, 2017, 177, 423-440.	2.5	24
10	Scaffolding the development of problem-solving skills in chemistry: guiding novice students out of dead ends and false starts. Chemistry Education Research and Practice, 2017, 18, 486-504.	2.5	42
11	Antibody recognition of aberrant glycosylation on the surface of cancer cells. Current Opinion in Structural Biology, 2017, 44, 1-8.	5.7	32
12	Student Engagement with a Flipped Classroom Teaching Design Affects Pharmacology Examination Performance in a Manner Dependent on Question Type. American Journal of Pharmaceutical Education, 2017, 81, 5931.	2.1	39
13	Molecular Simulations of Carbohydrates with a Fucose-Binding Burkholderia ambifaria Lectin Suggest Modulation by Surface Residues Outside the Fucose-Binding Pocket. Frontiers in Pharmacology, 2017, 8, 393.	3.5	8
14	Ten Simple Rules for Developing a MOOC. PLoS Computational Biology, 2016, 12, e1005061.	3.2	21
15	Crossword puzzles for chemistry education: learning goals beyond vocabulary. Chemistry Education Research and Practice, 2016, 17, 532-554.	2.5	12
16	Adopting an active learning approach to teaching in a research-intensive higher education context transformed staff teaching attitudes and behaviours. Higher Education Research and Development, 2016, 35, 619-633.	2.9	73
17	Flipped Classroom Implementation: A Case Report of Two Higher Education Institutions in the United States and Australia. Computers in the Schools, 2016, 33, 24-37.	1.0	56
18	Ligand Binding Pathways of Clozapine and Haloperidol in the Dopamine D ₂ and D ₃ Receptors. Journal of Chemical Information and Modeling, 2016, 56, 308-321.	5.4	31

#	Article	IF	CITATIONS
19	Homology Modeling and Docking Evaluation of Human Muscarinic Acetylcholine Receptors. Neuromethods, 2016, , 15-35.	0.3	1
20	Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules, 2015, 20, 10415-10434.	3.8	6
21	Carbohydrates in Cyberspace. Frontiers in Immunology, 2015, 6, 300.	4.8	6
22	Editorial: Structural and Computational Glycobiology – Immunity and Infection. Frontiers in Immunology, 2015, 6, 359.	4.8	0
23	The carbohydrate-binding promiscuity of Euonymus europaeus lectin is predicted to involve a single binding site. Glycobiology, 2015, 25, 101-114.	2.5	27
24	Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Molecular Immunology, 2015, 67, 75-88.	2.2	38
25	Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. Journal of Molecular Recognition, 2015, 28, 581-604.	2.1	211
26	Antibody-Carbohydrate Recognition from Docked Ensembles Using the AutoMap Procedure. Methods in Molecular Biology, 2015, 1331, 41-55.	0.9	2
27	Toward activated homology models of the human M1 muscarinic acetylcholine receptor. Journal of Molecular Graphics and Modelling, 2014, 49, 91-98.	2.4	13
28	Challenges and advances in structure-based virtual screening. Future Medicinal Chemistry, 2014, 6, 5-7.	2.3	16
29	Homology Modeling of Human Muscarinic Acetylcholine Receptors. Journal of Chemical Information and Modeling, 2014, 54, 243-253.	5.4	22
30	Synthesis, molecular structure, NMR spectroscopic and computational analysis of a selective adenosine A2A antagonist, ZM 241385. Structural Chemistry, 2013, 24, 1241-1251.	2.0	11
31	Latest developments in molecular docking: 2010–2011 in review. Journal of Molecular Recognition, 2013, 26, 215-239.	2.1	263
32	Novel adenosine A2A receptor ligands: A synthetic, functional and computational investigation of selected literature adenosine A2A receptor antagonists for extending into extracellular space. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3427-3433.	2.2	26
33	AutoMap: A tool for analyzing protein–ligand recognition using multiple ligand binding modes. Journal of Molecular Graphics and Modelling, 2013, 40, 80-90.	2.4	14
34	The significance of acid/base properties in drug discovery. Chemical Society Reviews, 2013, 42, 485-496.	38.1	236
35	The Acid/Base Profile of the Human Metabolome and Natural Products. Molecular Informatics, 2013, 32, 505-515.	2.5	11
36	Detection and Prevention of Aggregation-based False Positives in STD-NMR-based Fragment Screening. Australian Journal of Chemistry, 2013, 66, 1518.	0.9	9

#	Article	IF	CITATIONS
37	Molecular Characterization of Lipopolysaccharide Binding to Human (i) $\hat{l} \pm \langle l \rangle$ -1-Acid Glycoprotein. Journal of Lipids, 2012, 2012, 1-15.	4.8	23
38	Homobivalent Ligands of the Atypical Antipsychotic Clozapine: Design, Synthesis, and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2012, 55, 1622-1634.	6.4	39
39	Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping. PLoS ONE, 2012, 7, e35457.	2.5	18
40	Structural Glycobiology of Antibody Recognition in Xenotransplantation and Cancer Immunotherapy. , 2012, , 203-228.		4
41	A Computational Approach for Exploring Carbohydrate Recognition by Lectins in Innate Immunity. Frontiers in Immunology, 2011, 2, 23.	4.8	14
42	Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock 2010 Assessment. Structure, 2011, 19, 1108-1126.	3.3	269
43	The design, synthesis and biological evaluation of novel URB602 analogues as potential monoacylglycerol lipase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6782-6787.	2.2	15
44	Gas-phase formation and reactions of radical cations of guanosine, deoxyguanosine and their homodimers and heterodimers. International Journal of Mass Spectrometry, 2011, 304, 74-82.	1.5	20
45	Challenges and advances in computational docking: 2009 in review. Journal of Molecular Recognition, 2011, 24, 149-164.	2.1	273
46	Peptide inhibitors of xenoreactive antibodies mimic the interaction profile of the native carbohydrate antigens. Biopolymers, 2011, 96, 193-206.	2.4	10
47	Characterization of the N-Methyltransferase Activities of the Multifunctional Polypeptide Cyclosporin Synthetase. Chemistry and Biology, 2011, 18, 464-475.	6.0	21
48	Molecular Modelling: Advances in Biomolecular and Materials Modelling. Australian Journal of Chemistry, 2011, 64, 885.	0.9	0
49	Carbohydrate-mimetic peptides: structural aspects of mimicry and therapeutic implications. Expert Opinion on Biological Therapy, 2011, 11, 211-224.	3.1	20
50	New hybrids of clozapine and haloperidol and their isosteric analogues: synthesis, X-ray crystallography, conformational analysis and preliminary pharmacological evaluation. Structural Chemistry, 2010, 21, 613-628.	2.0	6
51	Free Ig Light Chains Interact with Sphingomyelin and Are Found on the Surface of Myeloma Plasma Cells in an Aggregated Form. Journal of Immunology, 2010, 185, 4179-4188.	0.8	20
52	Identification of preferred carbohydrate binding modes in xenoreactive antibodies by combining conformational filters and binding site maps. Glycobiology, 2010, 20, 724-735.	2.5	25
53	Binding Mode Prediction of PDE4 Inhibitors: A Comparison of Modelling Methods. Australian Journal of Chemistry, 2010, 63, 396.	0.9	3
54	The Synthesis and Preliminary Pharmacological Evaluation of a Series of Substituted 4'-Phenoxypropyl Analogues of the Atypical Antipsychotic Clozapine. Australian Journal of Chemistry, 2010, 63, 116.	0.9	2

#	Article	IF	CITATIONS
55	Using the \hat{l}^2 (sub)-Adrenoceptor for Structure-Based Drug Design. Journal of Chemical Education, 2010, 87, 625-627.	2.3	7
56	Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2010, 50, 626-637.	5.4	91
57	Structural biology of carbohydrate xenoantigens. Expert Opinion on Biological Therapy, 2009, 9, 1017-1029.	3.1	18
58	Altered peptide ligands of myelin basic protein (MBP _{87–99}) conjugated to reduced mannan modulate immune responses in mice. Immunology, 2009, 128, 521-533.	4.4	42
59	Conformational Analysis of Drug Molecules: A Practical Exercise in the Medicinal Chemistry Course. Journal of Chemical Education, 2009, 86, 477.	2.3	17
60	In silico analysis of antibody–carbohydrate interactions and its application to xenoreactive antibodies. Molecular Immunology, 2009, 47, 233-246.	2.2	31
61	Molecular Docking of Carbohydrate Ligands to Antibodies: Structural Validation against Crystal Structures. Journal of Chemical Information and Modeling, 2009, 49, 2749-2760.	5.4	62
62	Gas phase supramolecular cluster ions of deoxyguanosine induced by binding to (2,2′:6′2″-terpyridine)-platinum(II) and (diethylenetriamine)-platinum(II). Dalton Transactions, 2009, , 15	42 ^{3.3}	2
63	Reply to  Response to Milland <i>et al.</i> : Carbohydrate residues downstream of the terminal gall̂±(1,3)gal epitope modulate the specificity of xenoreactive antibodies'. Immunology and Cell Biology, 2008, 86, 633-634.	2.3	1
64	A double mutation of MBP83–99 peptide induces IL-4 responses and antagonizes IFN-γ responses. Journal of Neuroimmunology, 2008, 200, 77-89.	2.3	34
65	Mannosylation of mutated MBP83–99 peptides diverts immune responses from Th1 to Th2. Molecular Immunology, 2008, 45, 3661-3670.	2.2	32
66	Antibody–ligand docking: insights into peptide–carbohydrate mimicry. Molecular Simulation, 2008, 34, 461-469.	2.0	14
67	8-Chloro-5-(4-phenethylpiperazin-1-yl)pyrido[2,3-b][1,5]benzoxazepine. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1865-o1866.	0.2	0
68	MHC and MHCâ€'like molecules: Structural perspectives on the design of molecular vaccines. Hum Vaccin, 2008, 4, 400-409.	2.4	11
69	Geometric forms of 8-chloro-11-[4-(8-chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl]-5H-dibenzo[b,e][1,4]diazepine–ac (2/1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4034-o4034.	et one –p	oen o ane
70	Carbohydrate residues downstream of the terminal $Gall^{\hat{1}}(1,3)Gal$ epitope modulate the specificity of xenoreactive antibodies. Immunology and Cell Biology, 2007, 85, 623-632.	2.3	45
71	5,5′-(Piperazine-1,4-diyl)bis(8-chloropyrido[2,3-b][1,5]benzoxazepine). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5434-o5436.	0.2	1
72	Threeâ€dimensional structures of carbohydrate determinants of Lewis system antigens: Implications for effective antibody targeting of cancer. Immunology and Cell Biology, 2005, 83, 709-717.	2.3	66

#	Article	IF	Citations
73	Investigation of structure–activity relationships in a series of glibenclamide analogues. European Journal of Medicinal Chemistry, 2004, 39, 835-847.	5. 5	31
74	2-Methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine methanol solvate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1367-o1369.	0.2	16
75	A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15029-15034.	7.1	82
76	Mcg light chain dimer as a model system for ligand design: a docking study. Journal of Molecular Recognition, 2002, 15, 331-340.	2.1	3
77	Recognition of IgG-Derived Peptides by a Human IgM with an Unusual Combining Site. Scandinavian Journal of Immunology, 2002, 55, 242-255.	2.7	12
78	Docking of combinatorial peptide libraries into a broadly cross-reactive human IgM. Journal of Molecular Recognition, 2001, 14, 172-184.	2.1	19
79	Binding of synthetic peptides by a human monoclonal IgM with an unusual combining site structure. Journal of Molecular Recognition, 2001, 14, 229-238.	2.1	11
80	Immunoglobulin Cross-Reactivity Examined by Library Screening, Crystallography and Docking Studies. Combinatorial Chemistry and High Throughput Screening, 2001, 4, 397-408.	1.1	8
81	RNA-protein crosslinking to AMP residues at internal positions in RNA with a new photocrosslinking ATP analog. Nucleic Acids Research, 2000, 28, 1849-1858.	14.5	14
82	Probing the environment of nascent RNA in Escherichia coli transcription elongation complexes utilizing a new fluorescent ribonucleotide analog. Nucleic Acids Research, 1999, 27, 1369-1376.	14.5	13
83	Effects of 5-[S-(2,4-dinitrophenyl)-thio]-2′-deoxyuridine analog incorporation on the structure and stability of DNA hybrids: implications for the design of nucleic acid probes. , 1999, 12, 337-345.		3
84	Steric Aspects of the Binding of Monofunctional Platinum(II) Complexes to Sites on Nucleobases: Metal Complex "Flatness―as a Structural Element of Speciation. Inorganic Chemistry, 1998, 37, 6269-6275.	4.0	11
85	Steric Parameters for Metal Binding Sites on Nucleobases. Inorganic Chemistry, 1996, 35, 7914-7915.	4.0	10
86	'HELPA': a rapid means of student evaluation of lecturing performance in higher education. Assessment and Evaluation in Higher Education, 1995, 20, 191-202.	5.6	2
87	Sterically restrictive metal complexes. The synthesis and structural characterization of (1,) Tj ETQq1 1 0.784314 to cytosine and guanine derivatives. Inorganica Chimica Acta, 1993, 214, 169-176.	4 rgBT /Ονε 2.4	erlock 10 Tf 5 8
88	Teaching Chemistry Down Under in an "Upside Down―World: Lessons Learned and Stakeholder Perspectives. ACS Symposium Series, 0, , 105-122.	0.5	2